The sparr
package for R provides functions to estimate
fixed and adaptive kernel-smoothed spatial relative risk surfaces via
the density-ratio method and perform subsequent inference.
Fixed-bandwidth spatiotemporal density and relative risk estimation is
also supported.
This package is available on CRAN, and we recommend installing it from there using the standard
install.packages('sparr')
If you wish to live on the bleeding edge, you may install from github
using devtools
:
# install.packages("devtools")
::install_github('tilmandavies/sparr') devtools
This is a basic example of relative risk estimation for primary biliary cirrhosis cases from north east England.
# Load library
library(sparr)
#> Loading required package: spatstat
#> Loading required package: spatstat.data
#> Loading required package: spatstat.geom
#> spatstat.geom 3.0-6
#> Loading required package: spatstat.random
#> spatstat.random 3.1-3
#> Loading required package: spatstat.explore
#> Loading required package: nlme
#> spatstat.explore 3.0-6
#> Loading required package: spatstat.model
#> Loading required package: rpart
#> spatstat.model 3.2-1
#> Loading required package: spatstat.linnet
#> spatstat.linnet 3.0-6
#>
#> spatstat 3.0-3
#> For an introduction to spatstat, type 'beginner'
#>
#>
#> Welcome to
#> _____ ___ ____ ____ ____
#> / ___// _ \/ _ \/ __ \/ __ \
#> \__ \/ ___/ __ / ___/ ___/
#> ___/ / / / / / / /\ \/ /\ \
#> /____/_/ /_/ /_/_/ \__/ \_\ v2.3-10
#>
#> - type news(package="sparr") for an overview
#> - type help("sparr") for documentation
#> - type citation("sparr") for how to cite
# Load data on cases of primary biliary cirrhosis from north east England
data(pbc)
# Split into cases and controls
<- split(pbc)$case
pbc_case <- split(pbc)$control
pbc_cont
# Estimate global bandwidth for smoothing
<- OS(pbc, nstar="geometric")
h0
# Compute a symmetric (pooled) adaptive relative risk estimate
# with tolerance contours
<- risk(pbc_case, pbc_cont, h0=h0, adapt=TRUE, tolerate=TRUE,
pbc_rr hp=OS(pbc)/2, pilot.symmetry="pooled", davies.baddeley=0.05)
#> Estimating case density...
#> Done.
#> Estimating control density...Done.
#> Calculating tolerance contours...Done.
# And produce a plot
plot(pbc_rr)