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describe_nonlinear Describe the smooth term (for GAMs) or non-linear predictors
Description

This function summarises the smooth term trend in terms of linear segments. Using the approx-
imate derivative, it separates a non-linear vector into quasi-linear segments (in which the trend is
either positive or negative). Each of this segment its characterized by its beginning, end, size (in
proportion, relative to the total size) trend (the linear regression coefficient) and linearity (the R2 of
the linear regression).

Usage

describe_nonlinear(data, ...)

## S3 method for class 'data.frame'
describe_nonlinear(data, x = NULL, y = NULL, ...)

estimate_smooth(data, ...)
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estimate_contrasts

Arguments

data

X,y

Value

The data containing the link, as for instance obtained by estimate_relation().
Other arguments to be passed to or from.

The name of the responses variable (y) predicting variable (x).

A data frame of linear description of non-linear terms.

Examples

# Create data

data <- data.frame(x = rnorm(200))
data$y <- data$x*2 + rnorm(200, 0, 0.5)

model <<- 1m(y ~ poly(x, 2), data = data)
link_data <- estimate_relation(model, length = 100)

describe_nonlinear(link_data, x = "x")
estimate_contrasts Estimate Marginal Contrasts
Description

Run a contrast analysis by estimating the differences between each level of a factor. See also other
related functions such as estimate_means() and estimate_slopes().

Usage

estimate_contrasts(
model,
contrast = NULL,
at = NULL,
fixed = NULL,
transform = "none",
ci = 0.95,
p_adjust = "holm”,
method = "pairwise”,

adjust = NULL,
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Arguments

model A statistical model.

contrast A character vector indicating the name of the variable(s) for which to compute
the contrasts.

at The predictor variable(s) at which to evaluate the desired effect / mean / con-
trasts. Other predictors of the model that are not included here will be collapsed
and "averaged" over (the effect will be estimated across them).

fixed A character vector indicating the names of the predictors to be "fixed" (i.e.,
maintained), so that the estimation is made at these values.

transform Is passed to the type argument in emmeans::emmeans(). See this vignette.
Can be "none"” (default for contrasts), "response” (default for means), "mu”,
"unlink”, "log". "none” will leave the values on scale of the linear predictors.
"response” will transform them on scale of the response variable. Thus for a
logistic model, "none” will give estimations expressed in log-odds (probabilities
on logit scale) and "response” in terms of probabilities.

ci Confidence Interval (CI) level. Default to .95 (95%).

p_adjust The p-values adjustment method for frequentist multiple comparisons. Can be
one of "holm" (default), "tukey", "hochberg", "hommel", "bonferroni", "BH",
"BY", "fdr" or "none". See the p-value adjustment section in the emmeans: : test
documentation.

method Contrast method. See same argument in emmeans::contrast.

adjust Deprecated in favour of p_adjust.
Other arguments passed for instance to insight: :get_datagrid().

Details

See the Details section below, and don’t forget to also check out the Vignettes and README
examples for various examples, tutorials and use cases.

The estimate_slopes(), estimate_means() and estimate_contrasts() functions are forming

a group, as they are all based on marginal estimations (estimations based on a model). All three are
also built on the emmeans package, so reading its documentation (for instance for emmeans: : emmeans ()
and emmeans: :emtrends()) is recommended to understand the idea behind these types of proce-
dures.

* Model-based predictions is the basis for all that follows. Indeed, the first thing to understand
is how models can be used to make predictions (see estimate_link()). This corresponds to
the predicted response (or "outcome variable") given specific predictor values of the predictors
(i.e., given a specific data configuration). This is why the concept of reference grid() is so
important for direct predictions.

* Marginal ""means", obtained via estimate_means(), are an extension of such predictions,
allowing to "average" (collapse) some of the predictors, to obtain the average response value
at a specific predictors configuration. This is typically used when some of the predictors of
interest are factors. Indeed, the parameters of the model will usually give you the intercept
value and then the "effect" of each factor level (how different it is from the intercept). Marginal
means can be used to directly give you the mean value of the response variable at all the levels


https://CRAN.R-project.org/package=emmeans/vignettes/transformations.html
https://easystats.github.io/modelbased/articles/estimate_slopes.html
https://easystats.github.io/modelbased/index.html#features
https://easystats.github.io/modelbased/index.html#features
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of a factor. Moreover, it can also be used to control, or average over predictors, which is useful
in the case of multiple predictors with or without interactions.

Marginal contrasts, obtained via estimate_contrasts(), are themselves at extension of
marginal means, in that they allow to investigate the difference (i.e., the contrast) between the
marginal means. This is, again, often used to get all pairwise differences between all levels of
a factor. It works also for continuous predictors, for instance one could also be interested in
whether the difference at two extremes of a continuous predictor is significant.

Finally, marginal effects, obtained via estimate_slopes(), are different in that their focus
is not values on the response variable, but the model’s parameters. The idea is to assess the
effect of a predictor at a specific configuration of the other predictors. This is relevant in the
case of interactions or non-linear relationships, when the effect of a predictor variable changes
depending on the other predictors. Moreover, these effects can also be "averaged" over other
predictors, to get for instance the "general trend" of a predictor over different factor levels.

Example: Let’s imagine the following model 1m(y ~ condition * x) where condition is a factor
with 3 levels A, B and C and x a continuous variable (like age for example). One idea is to see how
this model performs, and compare the actual response y to the one predicted by the model (using
estimate_response()). Another idea is evaluate the average mean at each of the condition’s
levels (using estimate_means()), which can be useful to visualize them. Another possibility is to
evaluate the difference between these levels (using estimate_contrasts()). Finally, one could
also estimate the effect of x averaged over all conditions, or instead within each condition (using
[estimate_slopes]).

Value

A data frame of estimated contrasts.

Examples

# Basic usage
model <- 1m(Sepal.Width ~ Species, data = iris)
estimate_contrasts(model)

# Dealing with interactions
model <- Im(Sepal.Width ~ Species * Petal.Width, data = iris)

# By default: selects first factor
estimate_contrasts(model)

# Can also run contrasts between points of numeric
estimate_contrasts(model, contrast = "Petal.Width”, length = 4)

# Or both
estimate_contrasts(model, contrast = c(”Species”, "Petal.Width"), length = 2)

# Or with custom specifications
estimate_contrasts(model, contrast = c("Species”, "Petal.Width=c(1, 2)"))

# Can fixate the numeric at a specific value
estimate_contrasts(model, fixed = "Petal.Width")



6 estimate_expectation

# Or modulate it
estimate_contrasts(model, at = "Petal.Width”, length = 4)

# Standardized differences
estimated <- estimate_contrasts(lm(Sepal.Width ~ Species, data = iris))
standardize(estimated)

# Other models (mixed, Bayesian, ...)
data <- iris
data$Petal.Length_factor <- ifelse(data$Petal.Length < 4.2, "A", "B")

model <- 1me4::1lmer(Sepal.Width ~ Species + (1 | Petal.Length_factor), data = data)
estimate_contrasts(model)

library(rstanarm)

data <- mtcars
datas$cyl <- as.factor(data$cyl)
data$am <- as.factor(data$am)

model <- stan_glm(mpg ~ cyl * am, data = data, refresh = 0)
estimate_contrasts(model)
estimate_contrasts(model, fixed = "am")

model <- stan_glm(mpg ~ cyl * wt, data = data, refresh
estimate_contrasts(model)

estimate_contrasts(model, fixed = "wt")
estimate_contrasts(model, at = "wt”, length = 4)

)

model <- stan_glm(Sepal.Width ~ Species + Petal.Width + Petal.Length, data = iris, refresh = 0)
estimate_contrasts(model, at = "Petal.Length”, test = "bf")

estimate_expectation  Model-based response estimates and uncertainty

Description

After fitting a model, it is useful generate model-based estimates of the response variables for
different combinations of predictor values. Such estimates can be used to make inferences about
relationships between variables and to make predictions about individual cases.

Model-based response estimates and uncertainty can be generated for both the conditional average
response values (the regression line or expectation) and for predictions about individual cases. See
below for details.
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Usage

estimate_expectation(
model,
data = NULL,
ci = 0.95,
keep_iterations = FALSE,

)
estimate_response(...)
estimate_link(model, data = "grid"”, ci = 0.95, keep_iterations = FALSE, ...)

estimate_prediction(

model,
data = NULL,
ci =0.95,

keep_iterations = FALSE,

)

estimate_relation(
model,
data = "grid",
ci = 0.95,
keep_iterations = FALSE,

)
Arguments
model A statistical model.
data A data frame with model’s predictors to estimate the response. If NULL, the
model’s data is used. If "grid", the model matrix is obtained (through insight: :get_datagrid()).
ci Confidence Interval (CI) level. Default to @.95 (95%).

keep_iterations
If TRUE, will keep all iterations (draws) of bootstrapped or Bayesian models.
They will be added as additional columns named iter_1, iter_2, .... You
can reshape them to a long format by running reshape_iterations().

You can add all the additional control arguments from insight: :get_datagrid()
(used when data = "grid"”) and insight::get_predicted().

Value

A data frame of predicted values and uncertainty intervals, with class "estimate_predicted”.
Methods for visualisation_recipe() and plot() are available
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Expected (average) values

The most important way that various types of response estimates differ is in terms of what quantity
is being estimated and the meaning of the uncertainty intervals. The major choices are expected
values for uncertainty in the regression line and predicted values for uncertainty in the individual
case predictions.

Expected values refer to the fitted regression line - the estimated average response value (i.e., the
"expectation") for individuals with specific predictor values. For example, in a linear model y =2 +
3x + 4z + e, the estimated average y for individuals withx=1and z=21is 11.

For expected values, uncertainty intervals refer to uncertainty in the estimated conditional average
(where might the true regression line actually fall)? Uncertainty intervals for expected values are
also called "confidence intervals".

Expected values and their uncertainty intervals are useful for describing the relationship between
variables and for describing how precisely a model has been estimated.

For generalized linear models, expected values are reported on one of two scales:

* The link scale refers to scale of the fitted regression line, after transformation by the link
function. For example, for a logistic regression (logit binomial) model, the link scale gives
expected log-odds. For a log-link Poisson model, the link scale gives the expected log-count.

* The response scale refers to the original scale of the response variable (i.e., without any
link function transformation). Expected values on the link scale are back-transformed to the
original response variable metric (e.g., expected probabilities for binomial models, expected
counts for Poisson models).

Individual case predictions
In contrast to expected values, predicted values refer to predictions for individual cases. Predicted
values are also called "posterior predictions" or "posterior predictive draws".

For predicted values, uncertainty intervals refer to uncertainty in the individual response values
for each case (where might any single case actually fall)? Uncertainty intervals for predicted values
are also called "prediction intervals" or "posterior predictive intervals".

Predicted values and their uncertainty intervals are useful for forecasting the range of values that
might be observed in new data, for making decisions about individual cases, and for checking if
model predictions are reasonable ("posterior predictive checks").

Predicted values and intervals are always on the scale of the original response variable (not the link
scale).

Functions for estimating predicted values and uncertainty

modelbased provides 4 functions for generating model-based response estimates and their uncer-
tainty:
* estimate_expectation():

— Generates expected values (conditional average) on the response scale.
— The uncertainty interval is a confidence interval.
— By default, values are computed using the data used to fit the model.

e estimate_link():
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— Generates expected values (conditional average) on the link scale.
— The uncertainty interval is a confidence interval.

— By default, values are computed using a reference grid spanning the observed range of
predictor values (see visualisation_matrix()).

e estimate_prediction():

— Generates predicted values (for individual cases) on the response scale.
— The uncertainty interval is a prediction interval.
— By default, values are computed using the data used to fit the model.

e estimate_relation():

Like estimate_expectation().

Useful for visualizing a model.
Generates expected values (conditional average) on the response scale.

— The uncertainty interval is a confidence interval.

By default, values are computed using a reference grid spanning the observed range of
predictor values (see visualisation_matrix()).

estimate_response() is a deprecated alias for estimate_expectation().

Data for predictions

If the data = NULL, values are estimated using the data used to fit the model. If data = "grid",
values are computed using a reference grid spanning the observed range of predictor values with
visualisation_matrix(). This can be useful for model visualization. The number of predictor
values used for each variable can be controlled with the length argument. data can also be a data
frame containing columns with names matching the model frame (see insight::get_data()).
This can be used to generate model predictions for specific combinations of predictor values.

Note

These functions are built on top of insight::get_predicted() and correspond to different spec-
ifications of its parameters. It may be useful to read its documentation, in particular the description
of the predict argument for additional details on the difference between expected vs. predicted
values and link vs. response scales.

Additional control parameters can be used to control results from insight::get_datagrid()
(whendata ="grid")and from insight::get_predicted() (the function used internally to com-
pute predictions).

For plotting, check the examples in visualisation_recipe(). Also check out the Vignettes and
README examples for various examples, tutorials and usecases.

Examples
library(modelbased)

# Linear Models
model <- lm(mpg ~ wt, data = mtcars)

# Get predicted and prediction interval (see insight::get_predicted)


https://easystats.github.io/insight/reference/get_predicted.html
https://easystats.github.io/modelbased/articles/
https://easystats.github.io/modelbased/index.html#features
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estimate_response(model)

# Get expected values with confidence interval
pred <- estimate_relation(model)
pred

# Visualisation (see visualisation_recipe())
if (require(”see")) {

plot(pred)
}

# Standardize predictions

pred <- estimate_relation(lm(mpg ~ wt + am, data = mtcars))
z <- standardize(pred, include_response = FALSE)

z

unstandardize(z, include_response = FALSE)

# Logistic Models

model <- glm(vs ~ wt, data = mtcars, family = "binomial”)
estimate_response(model)

estimate_relation(model)

# Mixed models

if (require(”"1me4")) {
model <- lmer(mpg ~ wt + (1 | gear), data = mtcars)
estimate_response(model)
estimate_relation(model)

}

# Bayesian models

if (require(”"rstanarm”)) {
model <- rstanarm::stan_glm(mpg ~ wt, data = mtcars, refresh = 0, iter = 200)
estimate_response(model)
estimate_relation(model)

3

estimate_grouplevel Group-specific parameters of mixed models random effects

Description

Extract random parameters of each individual group in the context of mixed models. Can be re-
shaped to be of the same dimensions as the original data, which can be useful to add the random
effects to the original data.

Usage

estimate_grouplevel (model, type = "random”, ...)
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reshape_grouplevel(x, indices = "all”, group = "all”, ...)
Arguments
model A mixed model with random effects.
type If "random” (default), the coefficients are the ones estimated natively by the

model (as they are returned by, for instance, 1me4: : ranef ()). They correspond
to the deviation of each individual group from their fixed effect. As such, a coef-
ficient close to 0 means that the participants’ effect is the same as the population-
level effect (in other words, it is "in the norm"). If "total", it will return the sum
of the random effect and its corresponding fixed effects. These are known as
BLUPs (Best Linear Unbiased Predictions). This argument can be used to re-
produce the results given by 1me4: :ranef () and coef () (see ?coef.merMod).
Note that BLUPs currently don’t have uncertainty indices (such as SE and CI),
as these are not computable.

Other arguments passed to or from other methods.

X The output of estimate_grouplevel().
indices A list containing the indices to extract (e.g., "Coefficient").
group A list containing the random factors to select.

Examples

# 1lme4 model

if (require("1lme4") && require(”see”)) {
model <- Imer(mpg ~ hp + (1 | carb), data = mtcars)
random <- estimate_grouplevel(model)
random

# Visualize random effects
plot(random)

# Show group-specific effects
estimate_grouplevel(model, deviation = FALSE)

# Reshape to wide data so that it matches the original dataframe...
reshaped <- reshape_grouplevel(random, indices = c("Coefficient”, "SE"))

# ... and can be easily combined
alldata <- cbind(mtcars, reshaped)

# Use summary() to remove duplicated rows
summary (reshaped)

# Compute BLUPs
estimate_grouplevel(model, type = "total")
3

# Bayesian models
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if (require("rstanarm”)) {
model <- rstanarm::stan_lmer(mpg ~ hp + (1 | carb) + (1 | gear), data = mtcars, refresh = 0)
# Broken estimate_grouplevel (model)

}

estimate_means Estimate Marginal Means (Model-based average at each factor level)

Description

Estimate average value of response variable at each factor levels. For plotting, check the examples
in visualisation_recipe(). See also other related functions such as estimate_contrasts()
and estimate_slopes().

Usage
estimate_means(
model,
at = "auto",
fixed = NULL,
transform = "response”,
ci = 0.95,
backend = "emmeans"”,
)
Arguments
model A statistical model.
at The predictor variable(s) at which to evaluate the desired effect / mean / con-
trasts. Other predictors of the model that are not included here will be collapsed
and "averaged" over (the effect will be estimated across them).
fixed A character vector indicating the names of the predictors to be "fixed" (i.e.,
maintained), so that the estimation is made at these values.
transform Is passed to the type argument in emmeans::emmeans(). See this vignette.
Can be "none” (default for contrasts), "response” (default for means), "mu”,
"unlink”, "log". "none" will leave the values on scale of the linear predictors.
"response” will transform them on scale of the response variable. Thus for a
logistic model, "none” will give estimations expressed in log-odds (probabilities
on logit scale) and "response” in terms of probabilities.
ci Confidence Interval (CI) level. Default to @. 95 (95%).
backend Whether to use ’emmeans’ or ‘'marginaleffects’ as a backend. The latter is ex-

perimental and some features might not work.

Other arguments passed for instance to insight: :get_datagrid().


https://CRAN.R-project.org/package=emmeans/vignettes/transformations.html
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Details

See the Details section below, and don’t forget to also check out the Vignettes and README
examples for various examples, tutorials and use cases.

The estimate_slopes(), estimate_means() and estimate_contrasts() functions are forming

a group, as they are all based on marginal estimations (estimations based on a model). All three are
also built on the emmeans package, so reading its documentation (for instance for emmeans: : emmeans ()
and emmeans: :emtrends()) is recommended to understand the idea behind these types of proce-
dures.

* Model-based predictions is the basis for all that follows. Indeed, the first thing to understand
is how models can be used to make predictions (see estimate_link()). This corresponds to
the predicted response (or "outcome variable") given specific predictor values of the predictors
(i.e., given a specific data configuration). This is why the concept of reference grid() is so
important for direct predictions.

¢ Marginal ""means', obtained via estimate_means(), are an extension of such predictions,
allowing to "average" (collapse) some of the predictors, to obtain the average response value
at a specific predictors configuration. This is typically used when some of the predictors of
interest are factors. Indeed, the parameters of the model will usually give you the intercept
value and then the "effect" of each factor level (how different it is from the intercept). Marginal
means can be used to directly give you the mean value of the response variable at all the levels
of a factor. Moreover, it can also be used to control, or average over predictors, which is useful
in the case of multiple predictors with or without interactions.

* Marginal contrasts, obtained via estimate_contrasts(), are themselves at extension of
marginal means, in that they allow to investigate the difference (i.e., the contrast) between the
marginal means. This is, again, often used to get all pairwise differences between all levels of
a factor. It works also for continuous predictors, for instance one could also be interested in
whether the difference at two extremes of a continuous predictor is significant.

* Finally, marginal effects, obtained via estimate_slopes(), are different in that their focus
is not values on the response variable, but the model’s parameters. The idea is to assess the
effect of a predictor at a specific configuration of the other predictors. This is relevant in the
case of interactions or non-linear relationships, when the effect of a predictor variable changes
depending on the other predictors. Moreover, these effects can also be "averaged" over other
predictors, to get for instance the "general trend" of a predictor over different factor levels.

Example: Let’s imagine the following model Im(y ~ condition * x) where condition is a factor
with 3 levels A, B and C and x a continuous variable (like age for example). One idea is to see how
this model performs, and compare the actual response y to the one predicted by the model (using
estimate_response()). Another idea is evaluate the average mean at each of the condition’s
levels (using estimate_means()), which can be useful to visualize them. Another possibility is to
evaluate the difference between these levels (using estimate_contrasts()). Finally, one could
also estimate the effect of x averaged over all conditions, or instead within each condition (using
[estimate_slopes]).

Value

A data frame of estimated marginal means.


https://easystats.github.io/modelbased/articles/estimate_slopes.html
https://easystats.github.io/modelbased/index.html#features
https://easystats.github.io/modelbased/index.html#features
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Examples

library(modelbased)
# Frequentist models
model <- lm(Petal.Length ~ Sepal.Width * Species, data = iris)

estimate_means(model)

estimate_means(model, fixed = "Sepal.Width")

estimate_means(model, at = c("Species”, "Sepal.Width"), length = 2)
estimate_means(model, at = "Species=c('versicolor', 'setosa')")
estimate_means(model, at = "Sepal.Width=c(2, 4)")
estimate_means(model, at = c("Species”, "Sepal.Width=0"))
estimate_means(model, at = "Sepal.Width", length = 5)
estimate_means(model, at = "Sepal.Width=c(2, 4)")

# Methods that can be applied to it:
means <- estimate_means(model, fixed = "Sepal.Width")
plot(means) # which runs visualisation_recipe()

standardize(means)

data <- iris
data$Petal.Length_factor <- ifelse(data$Petal.Length < 4.2, "A", "B")

model <- Imer(Petal.Length ~ Sepal.Width + Species + (1 | Petal.Length_factor), data = data)
estimate_means(model)
estimate_means(model, at = "Sepal.Width", length = 3)

estimate_slopes Estimate Marginal Effects

Description

Estimate the slopes (i.e., the coefficient) of a predictor over or within different factor levels, or
alongside a numeric variable . In other words, to assess the effect of a predictor at specific configura-
tions data. Other related functions based on marginal estimations includes estimate_contrasts()
and estimate_means().
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Usage
estimate_slopes(model, trend = NULL, at = NULL, ci = @.95, ...)
Arguments
model A statistical model.
trend A character indicating the name of the variable for which to compute the slopes.
at The predictor variable(s) at which to evaluate the desired effect / mean / con-

trasts. Other predictors of the model that are not included here will be collapsed
and "averaged" over (the effect will be estimated across them).

ci Confidence Interval (CI) level. Default to @.95 (95%).

Other arguments passed for instance to insight: :get_datagrid().

Details

See the Details section below, and don’t forget to also check out the Vignettes and README
examples for various examples, tutorials and use cases.

The estimate_slopes(), estimate_means() and estimate_contrasts() functions are forming

a group, as they are all based on marginal estimations (estimations based on a model). All three are
also built on the emmeans package, so reading its documentation (for instance for emmeans: : emmeans ()
and emmeans: :emtrends()) is recommended to understand the idea behind these types of proce-
dures.

* Model-based predictions is the basis for all that follows. Indeed, the first thing to understand
is how models can be used to make predictions (see estimate_link()). This corresponds to
the predicted response (or "outcome variable") given specific predictor values of the predictors
(i.e., given a specific data configuration). This is why the concept of reference grid() is so
important for direct predictions.

* Marginal '"means'’, obtained via estimate_means(), are an extension of such predictions,
allowing to "average" (collapse) some of the predictors, to obtain the average response value
at a specific predictors configuration. This is typically used when some of the predictors of
interest are factors. Indeed, the parameters of the model will usually give you the intercept
value and then the "effect" of each factor level (how different it is from the intercept). Marginal
means can be used to directly give you the mean value of the response variable at all the levels
of a factor. Moreover, it can also be used to control, or average over predictors, which is useful
in the case of multiple predictors with or without interactions.

* Marginal contrasts, obtained via estimate_contrasts(), are themselves at extension of
marginal means, in that they allow to investigate the difference (i.e., the contrast) between the
marginal means. This is, again, often used to get all pairwise differences between all levels of
a factor. It works also for continuous predictors, for instance one could also be interested in
whether the difference at two extremes of a continuous predictor is significant.

* Finally, marginal effects, obtained via estimate_slopes(), are different in that their focus
is not values on the response variable, but the model’s parameters. The idea is to assess the
effect of a predictor at a specific configuration of the other predictors. This is relevant in the
case of interactions or non-linear relationships, when the effect of a predictor variable changes
depending on the other predictors. Moreover, these effects can also be "averaged" over other
predictors, to get for instance the "general trend" of a predictor over different factor levels.


https://easystats.github.io/modelbased/articles/estimate_slopes.html
https://easystats.github.io/modelbased/index.html#features
https://easystats.github.io/modelbased/index.html#features
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Example: Let’s imagine the following model 1m(y ~ condition * x) where condition is a factor
with 3 levels A, B and C and x a continuous variable (like age for example). One idea is to see how
this model performs, and compare the actual response y to the one predicted by the model (using
estimate_response()). Another idea is evaluate the average mean at each of the condition’s
levels (using estimate_means()), which can be useful to visualize them. Another possibility is to
evaluate the difference between these levels (using estimate_contrasts()). Finally, one could
also estimate the effect of x averaged over all conditions, or instead within each condition (using
[estimate_slopes]).

Value

A data.frame of class estimate_slopes.

Examples

# Get an idea of the data

ggplot(iris, aes(x = Petal.Length, y = Sepal.Width)) +
geom_point(aes(color = Species)) +
geom_smooth(color = "black”, se = FALSE) +
geom_smooth(aes(color = Species), linetype = "dotted”, se = FALSE) +
geom_smooth(aes(color = Species), method = "1m", se = FALSE)

# Model it

model <- Im(Sepal.Width ~ Species * Petal.Length, data = iris)

# Compute the marginal effect of Petal.lLength at each level of Species
slopes <- estimate_slopes(model, trend = "Petal.Length”, at = "Species"”)
slopes

# Plot it
plot(slopes)

standardize(slopes)

model <- mgcv::gam(Sepal.Width ~ s(Petal.Length), data = iris)
slopes <- estimate_slopes(model, at = "Petal.Length”, length = 50)
summary (slopes)

plot(slopes)

model <- mgcv::gam(Sepal.Width ~ s(Petal.Length, by = Species), data = iris)
slopes <- estimate_slopes(model,
trend = "Petal.lLength”,
at = c("Petal.Length”, "Species"”), length = 20
)
summary (slopes)
plot(slopes)
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find_inversions Find points of inversion

Description

Find points of inversion of a curve.

Usage

find_inversions(x)

Arguments

X A numeric vector.

Value

Vector of inversion points.

Examples

X <- sin(seq(@, 4 x pi, length.out = 100))
plot(x, type = "b")
find_inversions(x)

get_emcontrasts Easy 'emmeans’ and ’emtrends’

Description

The get_emmeans() function is a wrapper to facilitate the usage of emmeans::emmeans() and
emmeans: :emtrends (), providing a somewhat simpler and intuitive API to find the specifications
and variables of interest. It is meanly made to for the developers to facilitate the organization and
debugging, and end-users should rather use the estimate_x* () series of functions.

Usage
get_emcontrasts(

model,
contrast = NULL,
at = NULL,
fixed = NULL,
transform = "none"”,
method = "pairwise”,
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model_emcontrasts(
model,
contrast = NULL,
at = NULL,
fixed = NULL,
transform = "none”,
method = "pairwise”,

)

get_emmeans(
model,
at = "auto”,
fixed = NULL,

transform = "response”,

levels = NULL,
modulate = NULL,

)

model_emmeans(
model,
at = "auto”,
fixed = NULL,

transform = "response”,

levels = NULL,
modulate = NULL,

)

get_emtrends(
model,
trend = NULL,
at = NULL,
fixed = NULL,
levels = NULL,
modulate = NULL,

)

model_emtrends(
model,
trend = NULL,
at = NULL,
fixed = NULL,
levels = NULL,
modulate = NULL,

get_emcontrasts
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)
Arguments

model A statistical model.

contrast A character vector indicating the name of the variable(s) for which to compute
the contrasts.

at The predictor variable(s) at which to evaluate the desired effect / mean / con-
trasts. Other predictors of the model that are not included here will be collapsed
and "averaged" over (the effect will be estimated across them).

fixed A character vector indicating the names of the predictors to be "fixed" (i.e.,
maintained), so that the estimation is made at these values.

transform Is passed to the type argument in emmeans::emmeans(). See this vignette.
Can be "none” (default for contrasts), "response” (default for means), "mu”,
"unlink”, "log". "none" will leave the values on scale of the linear predictors.
"response” will transform them on scale of the response variable. Thus for a
logistic model, "none” will give estimations expressed in log-odds (probabilities
on logit scale) and "response” in terms of probabilities.

method Contrast method. See same argument in emmeans::contrast.

- Other arguments passed for instance to insight::get_datagrid().
levels, modulate
Deprecated, use at instead.

trend A character indicating the name of the variable for which to compute the slopes.

Examples

if (require(”emmeans”, quietly = TRUE)) {
# Basic usage
model <- Im(Sepal.Width ~ Species, data = iris)
get_emcontrasts(model)

# Dealing with interactions
model <- 1m(Sepal.Width ~ Species * Petal.Width, data = iris)
# By default: selects first factor
get_emcontrasts(model)
# Can also run contrasts between points of numeric
get_emcontrasts(model, contrast = "Petal.Width”, length = 3)
# Or both
get_emcontrasts(model, contrast = c("Species”, "Petal.Width"), length = 2)
# Or with custom specifications
estimate_contrasts(model, contrast = c("Species”, "Petal.Width=c(1, 2)"))
# Can fixate the numeric at a specific value
get_emcontrasts(model, fixed = "Petal.Width")
# Or modulate it
get_emcontrasts(model, at = "Petal.Width", length = 4)
3
model <- 1m(Sepal.Length ~ Species + Petal.Width, data = iris)


https://CRAN.R-project.org/package=emmeans/vignettes/transformations.html
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if (require(”emmeans”, quietly = TRUE)) {
# By default, 'at' is set to "Species”
get_emmeans(model)

# Overall mean (close to 'mean(iris$Sepal.Length)')
get_emmeans(model, at = NULL)

# One can estimate marginal means at several values of a 'modulate' variable
get_emmeans(model, at = "Petal.Width"”, length = 3)

# Interactions
model <- 1m(Sepal.Width ~ Species x Petal.Length, data = iris)

get_emmeans(model)
get_emmeans(model, at = c("Species”, "Petal.Length”), length = 2)
get_emmeans(model, at = c("Species”, "Petal.Length = c(1, 3, 5)"), length = 2)
3
if (require(”"emmeans”)) {
model <- 1m(Sepal.Width ~ Species x Petal.Length, data = iris)

get_emtrends(model)

get_emtrends(model, at = "Species”)
get_emtrends(model, at = "Petal.Length”)
get_emtrends(model, at = c("Species”, "Petal.Length"))

model <- Im(Petal.Length ~ poly(Sepal.Width, 4), data = iris)
get_emtrends(model)
get_emtrends(model, at = "Sepal.Width")

get_marginaleffects Easy marginaleffects

Description

Modelbased-like API to create marginaleffects objects. This is Work-in-progress.

Usage
get_marginaleffects(model, trend = NULL, at = NULL, fixed = NULL, ...)
Arguments
model A statistical model.
trend A character indicating the name of the variable for which to compute the slopes.
at The predictor variable(s) at which to evaluate the desired effect / mean / con-

trasts. Other predictors of the model that are not included here will be collapsed
and "averaged" over (the effect will be estimated across them).
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fixed A character vector indicating the names of the predictors to be "fixed" (i.e.,
maintained), so that the estimation is made at these values.

Other arguments passed for instance to insight: :get_datagrid().

Examples

if (require(”marginaleffects”)) {
model <- 1m(Sepal.Width ~ Species x Petal.Length, data = iris)

get_marginaleffects(model, trend "Petal.Length”, at = "Species")

get_marginaleffects(model, trend = "Petal.Length”, at = "Petal.Length")

get_marginaleffects(model, trend = "Petal.Length”, at = c("Species”, "Petal.Length"))
3

smoothing Smoothing a vector or a time series

Description

Smoothing a vector or a time series. For data.frames, the function will smooth all numeric variables
stratified by factor levels (i.e., will smooth within each factor level combination).

Usage
smoothing(x, method = "loess"”, strength = 0.25, ...)
Arguments
X A numeric vector.
method Can be "loess" (default) or "smooth". A loess smoothing can be slow.
strength This argument only applies when method = "loess"”. Degree of smoothing
passed to span (see loess()).
Arguments passed to or from other methods.
Value

A smoothed vector or data frame.

Examples

X <- sin(seq(@, 4 * pi, length.out = 100)) + rnorm(100, @, 0.2)
plot(x, type = "1")

lines(smoothing(x, method = "smooth"), type = "1", col = "blue")
lines(smoothing(x, method = "loess"), type = "1", col = "red")

x <- sin(seq(@, 4 x pi, length.out = 10000)) + rnorm(10000, @, 0.2)
plot(x, type = "1")

lines(smoothing(x, method = "smooth"), type = "1", col = "blue")
lines(smoothing(x, method = "loess"), type = "1", col = "red")
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visualisation_matrix Create a reference grid

Description
This function is an alias (another name) for the insight: :get_datagrid() function. Same argu-
ments apply.

Usage

visualisation_matrix(x, ...)

## S3 method for class 'data.frame'
visualisation_matrix(

X,

at = "all”,

target = NULL,

factors = "reference”,
numerics = "mean”,

preserve_range = FALSE,
reference = x,

## S3 method for class 'numeric'
visualisation_matrix(x, ...)

## S3 method for class 'factor'

visualisation_matrix(x, ...)
Arguments
X An object from which to construct the reference grid.

Arguments passed to or from other methods (for instance, length or range to
control the spread of numeric variables.).

at Indicates the focal predictors (variables) for the reference grid and at which
values focal predictors should be represented. If not specified otherwise, repre-
sentative values for numeric variables or predictors are evenly distributed from
the minimum to the maximum, with a total number of length values covering
that range (see "Examples’). Possible options for at are:

e "all”, which will include all variables or predictors.

¢ acharacter vector of one or more variable or predictor names, like c("Species”,
"Sepal.Width"), which will create a grid of all combinations of unique
values. For factors, will use all levels, for numeric variables, will use a
range of length length (evenly spread from minimum to maximum) and
for character vectors, will use all unique values.
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* alist of named elements, indicating focal predictors and their representative
values, e.g. at = list(Sepal.Length =c(2, 4), Species = "setosa").
* astring with assignments, e.g. at = "Sepal.Length = 2" orat = c("Sepal.Length
=2", "Species = 'setosa'") - note the usage of single and double quotes
to assign strings within strings.
There is a special handling of assignments with brackets, i.e. values defined
inside [ and ].For numeric variables, the value(s) inside the brackets should
either be
* two values, indicating minimum and maximum (e.g. at = "Sepal.Length
= [0, 5]"), for which a range of length length (evenly spread from given
minimum to maximum) is created.
¢ more than two numeric values at = "Sepal.Length =[2,3,4,5]", in which
case these values are used as representative values.
¢ a "token" that creates pre-defined representative values:
— for mean and -/+ 1 SD around the mean: "x = [sd]"
— for median and -/+ 1 MAD around the median: "x = [mad]”
— for Tukey’s five number summary (minimum, lower-hinge, median,
upper-hinge, maximum): "x = [fivenum]”
— for terciles, including minimum and maximum: "x = [terciles]”
— for terciles, excluding minimum and maximum: "x = [terciles2]”
— for quartiles, including minimum and maximum: "x = [quartiles]”
- for quartiles, excluding minimum and maximum: "x = [quartiles2]”
— for minimum and maximum value: "x = [minmax]"
— for 0 and the maximum value: "x = [zeromax]"
For factor variables, the value(s) inside the brackets should indicate one or more
factor levels, like at = "Species = [setosa, versicolor]”. Note: the length
argument will be ignored when using brackets-tokens.
The remaining variables not specified in at will be fixed (see also arguments
factors and numerics).

target Deprecated name. Please use at instead.

factors Type of summary for factors. Can be "reference” (set at the reference level),
"mode” (set at the most common level) or "all” to keep all levels.

numerics Type of summary for numeric values. Can be "all” (will duplicate the grid
for all unique values), any function ("mean”, "median”, ...) or a value (e.g.,

numerics = 0).
preserve_range Inthe case of combinations between numeric variables and factors, setting preserve_range
= TRUE will drop the observations where the value of the numeric variable is
originally not present in the range of its factor level. This leads to an unbal-
anced grid. Also, if you want the minimum and the maximum to closely match
the actual ranges, you should increase the length argument.
reference The reference vector from which to compute the mean and SD. Used when stan-
dardizing or unstandardizing the grid using effectsize: :standardize.

Value

Reference grid data frame.
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Examples

library(modelbased)

# Add one row to change the "mode” of Species
data <- rbind(iris, iris[149, ], make.row.names = FALSE)

# Single variable is of interest; all others are "fixed"

visualisation_matrix(data, at = "Sepal.Length")
visualisation_matrix(data, at = "Sepal.Length”, length = 3)
visualisation_matrix(data, at = "Sepal.Length”, range = "ci"”, ci = 0.90)
visualisation_matrix(data, at = "Sepal.Length”, factors = "mode")

# Multiple variables are of interest, creating a combination
visualisation_matrix(data, at = c("Sepal.Length”, "Species”), length = 3)
visualisation_matrix(data, at = c(1, 3), length = 3)

visualisation_matrix(data, at = c("”Sepal.Length”, "Species"), preserve_range = TRUE)

visualisation_matrix(data, at = c("”Sepal.Length”, "Species"), numerics = 0)
visualisation_matrix(data, at = c("Sepal.Length = 3", "Species”))
visualisation_matrix(data, at = c("”Sepal.Length = c(3, 1)", "Species = 'setosa'"))
# with list-style at-argument

visualisation_matrix(data, at = list(Sepal.Length = c(1, 3), Species = "setosa"))
# Standardize

vizdata <- visualisation_matrix(data, at = "Sepal.Length")

standardize(vizdata)

visualisation_recipe.estimate_grouplevel
Visualisation Recipe for ‘'modelbased’ Objects

Description

Visualisation Recipe for 'modelbased’ Objects

Usage

## S3 method for class 'estimate_grouplevel'
visualisation_recipe(

X,

hline = NULL,

pointrange = NULL,

facet_wrap = NULL,

labs = NULL,

## S3 method for class 'estimate_means'
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visualisation_recipe(
X y
show_data = "jitter",
point = NULL,
jitter = point,
boxplot = NULL,
violin = NULL,
line = NULL,
pointrange = NULL,
labs = NULL,
)
## S3 method for class 'estimate_predicted'
visualisation_recipe(
X,
show_data = "points”
point = NULL,
density_2d = NULL,
line = NULL,
ribbon = NULL,
labs = NULL,
)
## S3 method for class 'estimate_slopes'
visualisation_recipe(
X y
hline = NULL,
line = NULL,
pointrange = NULL,
ribbon = NULL,
labs = NULL,
facet_wrap = NULL,
)
Arguments
X A modelbased object.
Other arguments passed to other functions.
show_data Display the "raw" data as a background to the model-based estimation. Can

be set to "none"” to remove it. When input is the result of estimate_means,

show_data can be "points" (the jittered observation points), "boxplot
combination of them (see examples). When input is the result of estimate_response

violin" a

or estimate_relation, show_data can be "points" (the points of the original
data corresponding to the x and y axes), "density_2d", "density_2d_filled", "den-

sity_2d_polygon" or "density_2d_raster".
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point, jitter, boxplot, violin, pointrange, density_2d, line, hline, ribbon, labs, facet_wrap
Additional aesthetics and parameters for the geoms (see customization exam-

ple).
Examples
#
# estimate_grouplevel
#

if (require(”see") && require(”"lme4")) {
data <- 1me4::sleepstudy
data <- rbind(data, data)
data$Newfactor <- rep(c("A", "B", "C", "D"))

# 1 random intercept

model <- lmer(Reaction ~ Days + (1 | Subject), data = data)
x <- estimate_grouplevel (model)

layers <- visualisation_recipe(x)

layers

plot(layers)

if (require("see") && require("1lme4")) {
# 2 random intercepts
model <- lmer(Reaction ~ Days + (1 | Subject) + (1 | Newfactor), data = data)
x <- estimate_grouplevel (model)
plot(visualisation_recipe(x))

model <- lmer(Reaction ~ Days + (1 + Days | Subject) + (1 | Newfactor), data = data)
X <- estimate_grouplevel (model)
plot(visualisation_recipe(x))

# Simple Model ---------------

x <- estimate_means(1lm(Sepal.Width ~ Species, data = iris))
layers <- visualisation_recipe(x)

layers

plot(layers)

# Customize aesthetics

layers <- visualisation_recipe(x,
jitter = list(width = 0.03, color = "red"),
line = list(linetype = "dashed")

)

plot(layers)

# Customize raw data
plot(visualisation_recipe(x, show_data = c("violin", "boxplot”, "jitter")))

# Two levels -----------——---
data <- mtcars
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datas$cyl <- as.factor(data$cyl)
data$new_factor <- as.factor(rep(c("A", "B"), length.out = nrow(mtcars)))

model <- lm(mpg ~ new_factor * cyl * wt, data = data)
x <- estimate_means(model, at = c("new_factor”, "cyl"))
plot(visualisation_recipe(x))

# Modulations --------------
x <- estimate_means(model, at = c("new_factor”, "wt"))
plot(visualisation_recipe(x))

# x <- estimate_means(model, at = c("new_factor”, "cyl"”, "wt"))
# plot(visualisation_recipe(x)) # TODO: broken

#'  # GLMs —-—--—-mmmmmmmmmommen
data <- data.frame(vs = mtcars$vs, cyl = as.factor(mtcars$cyl))
x <- estimate_means(glm(vs ~ cyl, data = data, family = "binomial”))

plot(visualisation_recipe(x))

#
# estimate_relation, estimate_response,
#
if (require("ggplot2")) {

# Simple Model ---------------

x <- estimate_relation(Im(mpg ~ wt, data = mtcars))

layers <- visualisation_recipe(x)

layers

plot(layers)
3

if (require("ggplot2")) {
# Customize aesthetics ----------

layers <- visualisation_recipe(x,
point = list(color = "red”, alpha = 0.6, size = 3),
line = list(color = "blue”", size = 3),
ribbon = list(fill = "green"”, alpha = 0.7),
labs = list(subtitle = "Oh yeah!")
)
layers
plot(layers)

# Customize raw data -------------

plot(visualisation_recipe(x, show_data = "none"))
plot(visualisation_recipe(x, show_data = c("density_2d", "points")))
plot(visualisation_recipe(x, show_data = "density_2d_filled"))
plot(visualisation_recipe(x, show_data = "density_2d_polygon"))
plot(visualisation_recipe(x, show_data = "density_2d_raster"”)) +
scale_x_continuous(expand = c(0, 0)) +
scale_y_continuous(expand = c(@, @))

27
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# Single predictors examples -----------

plot(estimate_relation(lm(Sepal.Length ~ Sepal.Width, data = iris)))
plot(estimate_relation(lm(Sepal.Length ~ Species, data = iris)))

# 2-ways interaction ------------

# Numeric * numeric

x <- estimate_relation(Im(mpg ~ wt * gsec, data = mtcars))
layers <- visualisation_recipe(x)

plot(layers)

# Numeric * factor

x <- estimate_relation(lm(Sepal.Width ~ Sepal.Length * Species, data = iris))
layers <- visualisation_recipe(x)

plot(layers)

# Factor * numeric

x <- estimate_relation(lm(Sepal.Width ~ Species * Sepal.Length, data = iris))
layers <- visualisation_recipe(x)

plot(layers)

# 3-ways interaction ------------

data <- mtcars

data$vs <- as.factor(data$vs)

datas$cyl <- as.factor(data$cyl)

datas$new_factor <- as.factor(rep(c("A”, "B"), length.out = nrow(mtcars)))

# Numeric * numeric * numeric

x <- estimate_relation(lm(mpg ~ wt * gsec * hp, data = data), length = c(5, 3, 20))
layers <- visualisation_recipe(x)

plot(layers)

# Numeric * numeric * factor

x <- estimate_relation(Im(mpg ~ wt * am * vs, data = data))
layers <- visualisation_recipe(x)

plot(layers)

# Numeric * factor * factor

x <- estimate_relation(Im(mpg ~ wt * cyl * new_factor, data = data))
layers <- visualisation_recipe(x)

plot(layers)

# Factor * numeric * numeric
x <- estimate_relation(Im(mpg ~ cyl * gsec * hp, data = data))
layers <- visualisation_recipe(x)
plot(layers) +
scale_size_continuous(range = c(0.2, 1))

# GLMs -—-—-—-—=—-—————— -
X <- estimate_relation(glm(vs ~ mpg, data = mtcars, family = "binomial”))
plot(visualisation_recipe(x))
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plot(visualisation_recipe(x, show_data = "jitter"”, point = list(height = 0.03)))

# Multiple CIs ----—---—----——---——--
plot(estimate_relation(lm(mpg ~ disp, data = mtcars),
ci = c(.50, .80, .95)
D)
plot(estimate_relation(lm(Sepal.Length ~ Species, data = iris),
ci = c(0.5, 0.7, 0.95)
D)

# Bayesian models --------------——---—-
if (require("ggplot2") && require(”rstanarm”)) {
model <- rstanarm::stan_glm(mpg ~ wt, data = mtcars, refresh = @)

# Plot individual draws instead of regular ribbon

x <- estimate_relation(model, keep_iterations = 100)

layers <- visualisation_recipe(x, ribbon = list(color = "red"))
plot(layers)

model <- rstanarm::stan_glm(Sepal.Width ~ Species * Sepal.Length, data = iris, refresh = 0)
plot(estimate_relation(model, keep_iterations = 100))

}

#
# estimate_slopes
#
if (require(”ggplot2"”)) {

model <- Im(Sepal.Width ~ Species x Petal.Length, data = iris)

x <- estimate_slopes(model, trend = "Petal.Length”, at = "Species”)

layers <- visualisation_recipe(x)
layers
plot(layers)

model <- Im(Petal.Length ~ poly(Sepal.Width, 4), data = iris)
X <- estimate_slopes(model, at = "Sepal.Width"”, length = 20)
plot(visualisation_recipe(x))

model <- 1m(Petal.Length ~ Species * poly(Sepal.Width, 3), data = iris)
X <- estimate_slopes(model, at = c("Sepal.Width"”, "Species"))
plot(visualisation_recipe(x))

}

# TODO: fails with latest emmeans (1.8.0)
if (require("mgcv")) {

data <- iris

data$Petal.Length <- data$Petal.Length”2

model <- mgcv::gam(Sepal.Width ~ t2(Petal.Width, Petal.Length), data = data)
x <- estimate_slopes(model, at = c("Petal.Width"”, "Petal.Length”), length = 20)
plot(visualisation_recipe(x))
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model <- mgcv::gam(Sepal.Width ~ t2(Petal.Width, Petal.Length, by = Species), data = data)
x <- estimate_slopes(model, at = c("Petal.Width"”, "Petal.Length”, "Species”), length = 10)
plot(visualisation_recipe(x))

}

zero_crossings Find zero crossings of a vector

Description

Find zero crossings of a vector, i.e., indices when the numeric variable crosses 0.

Usage

zero_crossings(x)

Arguments

X A numeric vector.

Value

Vector of zero crossings.

See Also

Based on the uniroot.all function from the rootSolve package.

Examples

x <- sin(seq(@, 4 * pi, length.out = 100))
plot(x)
zero_crossings(x)
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