mcgf_rs
objectThe mcgf
package contains useful functions to simulate
Markov chain Gaussian fields (MCGF) and regime-switching Markov chain
Gaussian fields (RS-MCGF) with covariance structures of the Gneiting
class (Gneiting 2002). It also provides
useful tools to estimate the parameters by weighted least squares (WLS)
and maximum likelihood estimation (MLE). The mcgf_rs
function can used be to fit covariance models and obtain Kriging
forecasts. A typical workflow for fitting a regime-switching mcgf is
given below.
mcgf_rs
object by providing a dataset and the
corresponding locations/distancesWe will demonstrate the use of mcgf_rs
by an example
below.
Here we will generate a regime-switching MCGF process of size 5,000 with the general stationary covariance structure. More specifically, we suppose there are two regimes each with different prevailing winds but the same fully symmetric model. We will begin with simulating the regime process first.
We start with simulating a transition matrix for a two-stage Markov chain with high probabilities of staying in the current regime. The simulated transition matrix and regime process is given below.
library(mcgf)
K <- 2
N <- 5000
lag <- 5
set.seed(123)
tran_mat <- matrix(rnorm(K^2, mean = 0.06 / (K - 1), sd = 0.01), nrow = K)
diag(tran_mat) <- rnorm(K, mean = 0.94, sd = 0.1)
tran_mat <- sweep(abs(tran_mat), 1, rowSums(tran_mat), `/`)
tran_mat
#> [,1] [,2]
#> [1,] 0.92650859 0.07349141
#> [2,] 0.04934827 0.95065173
We generate the coordinates of 25 locations below and treat the last 5 locations as unobserved locations.
set.seed(123)
x <- stats::rnorm(25, -110)
y <- stats::rnorm(25, 50)
locations_all <- cbind(lon = x, lat = y)
locations <- locations_all[1:20, ]
locations_new <- locations_all[-c(1:20), ]
locations_all
#> lon lat
#> [1,] -110.5605 48.31331
#> [2,] -110.2302 50.83779
#> [3,] -108.4413 50.15337
#> [4,] -109.9295 48.86186
#> [5,] -109.8707 51.25381
#> [6,] -108.2849 50.42646
#> [7,] -109.5391 49.70493
#> [8,] -111.2651 50.89513
#> [9,] -110.6869 50.87813
#> [10,] -110.4457 50.82158
#> [11,] -108.7759 50.68864
#> [12,] -109.6402 50.55392
#> [13,] -109.5992 49.93809
#> [14,] -109.8893 49.69404
#> [15,] -110.5558 49.61953
#> [16,] -108.2131 49.30529
#> [17,] -109.5021 49.79208
#> [18,] -111.9666 48.73460
#> [19,] -109.2986 52.16896
#> [20,] -110.4728 51.20796
#> [21,] -111.0678 48.87689
#> [22,] -110.2180 49.59712
#> [23,] -111.0260 49.53334
#> [24,] -110.7289 50.77997
#> [25,] -110.6250 49.91663
To simulate the 5-th order RS-MCGF process, we calculate the distance
matrices for all locations first and then use mcgf_rs_sim
to simulate such process.
# simulate RS MCGF
par_base <- list(
par_s = list(nugget = 0, c = 0.005, gamma = 0.5),
par_t = list(a = 0.5, alpha = 0.2)
)
par_lagr1 <- list(v1 = 100, v2 = 100, k = 2)
par_lagr2 <- list(v1 = 50, v2 = 100, k = 2)
h <- find_dists_new(locations, locations_new)
set.seed(123)
data_all <- mcgf_rs_sim(
N = N, label = regime,
base_ls = list("sep"),
lagrangian_ls = list("lagr_tri"),
par_base_ls = list(par_base),
par_lagr_ls = list(par_lagr1, par_lagr2),
lambda_ls = list(0.3, 0.3),
lag_ls = list(lag, lag),
dists_ls = list(h, h)
)
data_all <- data_all[-c(1:(lag + 1)), ]
rownames(data_all) <- 1:nrow(data_all)
head(data_all)
#> regime 1 2 3 4 5 6
#> 1 1 -0.4131534 -0.21405685 0.7229975 -0.08322733 0.07023563 1.1604699
#> 2 1 -1.7574429 -0.06411826 0.3964733 -1.75421279 0.80900801 0.9012895
#> 3 1 -0.8264216 -1.02490415 -0.4809606 -0.52653010 -0.49018553 0.4388830
#> 4 1 0.4089212 -0.72910670 -1.6972114 -0.01897436 -1.38506809 -1.1222586
#> 5 1 -0.4281591 0.03573133 -0.4868917 -0.58029926 -0.71498960 -0.5022470
#> 6 1 -0.9151832 -0.15757508 0.1973134 -1.31430392 0.24629283 0.9822986
#> 7 8 9 10 11 12
#> 1 0.3711177 -0.7330453 -0.63540128 -0.505026336 1.1774047 0.4296625
#> 2 -0.8354430 -0.2938705 0.03111661 0.085975510 1.1477487 0.4023173
#> 3 -1.6674136 -1.0990787 -1.00007998 -0.947069513 0.3588851 -0.8873257
#> 4 -0.9068406 -0.8932880 -0.58649863 -0.683863298 -0.9053647 -0.4603737
#> 5 -0.6486205 -0.9952912 -0.44048783 -0.006790727 -0.5014230 0.1964397
#> 6 -0.5239507 -0.6489432 -0.53016266 -0.683924188 1.2357249 -0.2040576
#> 13 14 15 16 17 18 19
#> 1 0.4330098 0.2688759 -0.2456852 1.1310980 0.5107434 -1.49171524 0.5461195
#> 2 -0.4543559 -0.9603846 -1.4064577 -0.4327531 -0.6527845 -2.36113493 2.0883711
#> 3 -1.4776433 -1.7967629 -1.9298573 -0.7471992 -1.4625251 -1.10579922 1.4295638
#> 4 -0.6764329 -0.9565217 -0.3102249 -0.1738450 -0.6722008 -0.01761965 -0.3733054
#> 5 -0.8742965 -0.6689574 -0.3878315 0.1411472 -0.6709104 -1.22389933 -0.7333397
#> 6 -0.4211337 -0.1178140 -1.2466737 0.1826659 -0.4473040 -2.16117290 -0.1881705
#> 20 New_1 New_2 New_3 New_4 New_5
#> 1 -0.44740467 -1.1643327 -0.06426498 -1.0297345 -0.77352947 -0.5462547
#> 2 0.79348781 -2.5153602 -1.36237046 -2.0750023 -0.01391596 -1.2526368
#> 3 0.01670341 -1.5287918 -2.41782779 -1.2808399 -1.23474600 -2.2184071
#> 4 -0.31026289 -0.3648568 -0.20992439 0.1999604 -0.81191510 -0.8132315
#> 5 -0.38518119 -0.9982079 -0.59390388 -0.8748418 -0.61917135 -0.1031998
#> 6 -0.48971901 -1.9617002 -1.33014481 -1.4159325 -0.20824058 -1.3501761
We will holdout the new locations for parameter estimation.
We will first fit pure spatial and temporal models, then the fully
symmetric model, and finally the general stationary model. First, we
will create an mcgf_rs
object and calculate auto- and
cross- correlations.
data_mcgf <- mcgf_rs(data_old[, -1],
locations = locations, longlat = TRUE,
label = data_old[, 1]
)
#> `time` is not provided, assuming rows are equally spaced temporally.
data_mcgf <- add_acfs(data_mcgf, lag_max = lag)
data_mcgf <- add_ccfs(data_mcgf, lag_max = lag)
# If multiple cores are available
# data_mcgf <- add_ccfs(data_mcgf, lag_max = lag, ncores = 8)
Here acfs
actually refers to the mean auto-correlations
across the stations for each time lag. To view the calculated
acfs
, we can run:
acfs(data_mcgf)
#> $acfs
#> lag0 lag1 lag2 lag3 lag4 lag5
#> 1.0000000 0.6075506 0.4076272 0.3805953 0.3702800 0.3586723
#>
#> $acfs_rs
#> $acfs_rs$`Regime 1`
#> lag0 lag1 lag2 lag3 lag4 lag5
#> 1.0000000 0.5953378 0.3991894 0.3814418 0.3714696 0.3639292
#>
#> $acfs_rs$`Regime 2`
#> lag0 lag1 lag2 lag3 lag4 lag5
#> 1.0000000 0.6149751 0.4125410 0.3797082 0.3691936 0.3550066
Similarly, we can view the ccfs
by the ccfs
function. Here we will present lag 1 regime-switching ccfs for the first
6 locations for the two regimes.
# Regime 1
ccfs(data_mcgf)$ccfs_rs$`Regime 1`[1:6, 1:6, 2]
#> 1 2 3 4 5 6
#> 1 0.6047946 0.1236369 0.05451172 0.3713023 0.1363766 0.07120106
#> 2 0.3027375 0.6174314 0.25427725 0.4220703 0.4477891 0.23134358
#> 3 0.2293202 0.3347340 0.58222643 0.3837498 0.2952973 0.46537082
#> 4 0.5256692 0.1564803 0.12938351 0.6003370 0.1701296 0.11145141
#> 5 0.2602507 0.5444454 0.32282783 0.3751226 0.6132754 0.30494395
#> 6 0.1959693 0.3710529 0.53421219 0.3193299 0.3348082 0.56379838
# Regime 2
ccfs(data_mcgf)$ccfs_rs$`Regime 2`[1:6, 1:6, 2]
#> 1 2 3 4 5 6
#> 1 0.6172964 0.1575309 0.1723283 0.3893590 0.1096808 0.1688383
#> 2 0.2620954 0.6289374 0.3280881 0.3878912 0.4234188 0.3004865
#> 3 0.2811509 0.3158273 0.6163612 0.4355238 0.2379046 0.4932367
#> 4 0.5759686 0.1825519 0.2120796 0.6293679 0.1514506 0.1733759
#> 5 0.1509059 0.5799483 0.4202242 0.2930347 0.6249524 0.4089683
#> 6 0.2351466 0.3713949 0.5875119 0.3502719 0.3122138 0.6069874
The pure spatial model can be fitted using the fit_base
function. The results are actually obtained from the optimization
function nlminb
. Since the base model is the same for the
two regimes, we set rs = FALSE
to indicate this.
fit_spatial <- fit_base(
data_mcgf,
model_ls = "spatial",
lag_ls = lag,
par_init_ls = list(c(c = 0.000001, gamma = 0.5)),
par_fixed_ls = list(c(nugget = 0)),
rs = FALSE
)
fit_spatial[[1]]$fit
#> $par
#> c gamma
#> 0.00390725 0.50000000
#>
#> $objective
#> [1] 13.20815
#>
#> $convergence
#> [1] 0
#>
#> $iterations
#> [1] 2
#>
#> $evaluations
#> function gradient
#> 11 7
#>
#> $message
#> [1] "both X-convergence and relative convergence (5)"
The pure temporal can also be fitted by fit_base
:
fit_temporal <- fit_base(
data_mcgf,
model = "temporal",
lag_ls = lag,
par_init_ls = list(c(a = 1, alpha = 0.5)),
rs = FALSE
)
fit_temporal[[1]]$fit
#> $par
#> a alpha
#> 0.7137588 0.3484975
#>
#> $objective
#> [1] 0.0202941
#>
#> $convergence
#> [1] 0
#>
#> $iterations
#> [1] 9
#>
#> $evaluations
#> function gradient
#> 11 26
#>
#> $message
#> [1] "relative convergence (4)"
We can store the fitted spatial and temporal models to
data_mcgf
using add_base
:
We can also calculate the WLS estimates all at once by fitting the separable model:
fit_sep <- fit_base(
data_mcgf,
model_ls = "sep",
lag_ls = lag,
par_init_ls = list(c(c = 0.000001, gamma = 0.5, a = 1, alpha = 0.5)),
par_fixed_ls = list(c(nugget = 0)),
control = list(list(iter.max = 10000, eval.max = 10000)),
rs = FALSE
)
fit_sep[[1]]$fit
#> $par
#> c gamma a alpha
#> 0.00390725 0.50000000 0.72365072 0.39736171
#>
#> $objective
#> [1] 29.16779
#>
#> $convergence
#> [1] 0
#>
#> $iterations
#> [1] 11
#>
#> $evaluations
#> function gradient
#> 27 64
#>
#> $message
#> [1] "relative convergence (4)"
store the fully symmetric model as the base model and print the base model:
data_mcgf <- add_base(data_mcgf, fit_base = fit_sep, old = TRUE)
model(data_mcgf, model = "base", old = TRUE)
#> ----------------------------------------
#> Model
#> ----------------------------------------
#> - Time lag: 5
#> - Scale of time lag: 1
#> - Forecast horizon: 1
#> ----------------------------------------
#> Old - not in use
#> ----------------------------------------
#> - Regime switching: FALSE
#> - Base model: sep
#> - Parameters:
#> c gamma nugget a alpha
#> 0.00390725 0.50000000 0.00000000 0.71375884 0.34849745
#>
#> - Fixed parameters:
#> nugget
#> 0
#>
#> - Parameter estimation method: wls wls
#>
#> - Optimization function: nlminb nlminb
#> ----------------------------------------
#> Base
#> ----------------------------------------
#> - Regime switching: FALSE
#> - Base model: sep
#> - Parameters:
#> c gamma a alpha nugget
#> 0.00390725 0.50000000 0.72365072 0.39736171 0.00000000
#>
#> - Fixed parameters:
#> nugget
#> 0
#>
#> - Parameter estimation method: wls
#>
#> - Optimization function: nlminb
The old = TRUE
in add_base
keeps the fitted
pure spatial and temporal models for records, and they are not used for
any further steps. It is recommended to keep the old model not only for
reproducibility, but to keep a history of fitted models.
We will fit Lagrangian correlation functions to model the regime-dependent prevailing winds:
fit_lagr_rs <- fit_lagr(data_mcgf,
model_ls = list("lagr_tri"),
par_init_ls = list(list(lambda = 0.1, v1 = 100, v2 = 100, k = 2))
)
lapply(fit_lagr_rs[1:2], function(x) x$fit)
#> $`Regime 1`
#> $`Regime 1`$par
#> lambda v1 v2 k
#> 0.1703142 74.4859663 65.8446145 1.3401565
#>
#> $`Regime 1`$objective
#> [1] 12.76542
#>
#> $`Regime 1`$convergence
#> [1] 0
#>
#> $`Regime 1`$iterations
#> [1] 31
#>
#> $`Regime 1`$evaluations
#> function gradient
#> 38 147
#>
#> $`Regime 1`$message
#> [1] "relative convergence (4)"
#>
#>
#> $`Regime 2`
#> $`Regime 2`$par
#> lambda v1 v2 k
#> 0.2167212 43.9009789 78.2938281 1.7852123
#>
#> $`Regime 2`$objective
#> [1] 15.68579
#>
#> $`Regime 2`$convergence
#> [1] 0
#>
#> $`Regime 2`$iterations
#> [1] 27
#>
#> $`Regime 2`$evaluations
#> function gradient
#> 35 128
#>
#> $`Regime 2`$message
#> [1] "relative convergence (4)"
Finally we will store this model to data_mcgf
using
add_lagr
and then print the final model:
data_mcgf <- add_lagr(data_mcgf, fit_lagr = fit_lagr_rs)
model(data_mcgf, old = TRUE)
#> ----------------------------------------
#> Model
#> ----------------------------------------
#> - Time lag: 5, 5
#> - Scale of time lag: 1
#> - Forecast horizon: 1
#> ----------------------------------------
#> Old - not in use
#> ----------------------------------------
#> - Regime switching: FALSE
#> - Base model: sep
#> - Parameters:
#> c gamma nugget a alpha
#> 0.00390725 0.50000000 0.00000000 0.71375884 0.34849745
#>
#> - Fixed parameters:
#> nugget
#> 0
#>
#> - Parameter estimation method: wls wls
#>
#> - Optimization function: nlminb nlminb
#> ----------------------------------------
#> Base
#> ----------------------------------------
#> - Regime switching: FALSE
#> - Base model: sep
#> - Parameters:
#> c gamma a alpha nugget
#> 0.00390725 0.50000000 0.72365072 0.39736171 0.00000000
#>
#> - Fixed parameters:
#> nugget
#> 0
#>
#> - Parameter estimation method: wls
#>
#> - Optimization function: nlminb
#> ----------------------------------------
#> Lagrangian
#> ----------------------------------------
#> - Regime switching: TRUE
#> --------------------
#> Regime 1
#> --------------------
#> - Lagrangian model: lagr_tri
#> - Parameters:
#> lambda v1 v2 k
#> 0.1703142 74.4859663 65.8446145 1.3401565
#>
#> - Fixed parameters:
#> NULL
#>
#> - Parameter estimation method: wls
#>
#> - Optimization function: nlminb
#> --------------------
#> Regime 2
#> --------------------
#> - Lagrangian model: lagr_tri
#> - Parameters:
#> lambda v1 v2 k
#> 0.2167212 43.9009789 78.2938281 1.7852123
#>
#> - Fixed parameters:
#> NULL
#>
#> - Parameter estimation method: wls
#>
#> - Optimization function: nlminb
We provide functionalists for computing simple Kriging forecasts for
new locations. The associated function is krige_new
, and
users can either supply the coordinates for the new locations or the
distance matrices for all locations.
krige_base_new <- krige_new(
x = data_mcgf,
locations_new = locations_new,
model = "base",
interval = TRUE
)
krige_stat_new <- krige_new(
x = data_mcgf,
locations_new = locations_new,
model = "all",
interval = TRUE
)
Next, we can compute the root mean square error (RMSE), mean absolute error (MAE), and the realized percentage of observations falling outside the 95% PI (POPI) for these models for the new locations.
# POPI
popi_base <- colMeans(
data_new < krige_base_new$lower[, -c(1:20)] | data_new > krige_base_new$upper[, -c(1:20)],
na.rm = T
)
popi_stat <- colMeans(
data_new < krige_stat_new$lower[, -c(1:20)] | data_new > krige_stat_new$upper[, -c(1:20)],
na.rm = T
)
popi <- c(
"Base" = mean(popi_base),
"STAT" = mean(popi_stat)
)
popi
#> Base STAT
#> 0.04560561 0.03811812