Package ‘bigergm’

February 16, 2024

Title Fit, Simulate, and Diagnose Hierarchical Exponential-Family
Models for Big Networks
Version 1.1.0

Description
A toolbox to analyze and simulate large networks based on hierarchical exponential-family ran-
dom graph models (HERGMs).'bigergm' implements the estimation for large networks effi-
ciently on large networks building on the 'lighthergm' package. Moreover, the package con-
tains tools for simulating networks with local dependence to assess the estimates' goodness-of-fit.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Depends R (>=3.5.0), ergm (>=4.5.0), Rcpp
LinkingTo Rcpp, ReppArmadillo (>=0.10.5)

Imports RcppArmadillo (>= 0.10.5), network (>= 1.16.0), Matrix,
cachem, tidyr, statnet.common, methods, stringr, intergraph,
igraph, parallel, magrittr, purrr, dplyr, tibble, glue, readr,
foreach, rlang, doParallel, memoise, reticulate

Suggests rmarkdown, knitr, testthat, sna
VignetteBuilder knitr
NeedsCompilation yes

Author Shota Komatsu [aut],
Juan Nelson Martinez Dahbura [aut],
Takanori Nishida [aut],
Angelo Mele [aut],
Cornelius Fritz [aut, cre],
Michael Schweinberger [aut]

Maintainer Cornelius Fritz <corneliusfritz2010@gmail.com>
Repository CRAN
Date/Publication 2024-02-16 15:10:10 UTC

2

compute_multiplied_feature_matrices

R topics documented:

Index

compute_multiplied_feature_matrices Lo 2
compute_yule_coef e e 3
draw_between_block_connection 4
draw_within_block_connection 5
estimate_between_paraml e 7
estimate_within_params 8
get_list_sparse_feature_adjmat oL oo 9
gof bigergm L 10
hergm e e e 12
install_python_dependencies o 15
simulate_hergm L. 16
simulate_hergm_within oL 18
tOyNet e 20

21

compute_multiplied_feature_matrices

Get a list of sparse feature adjacency matrix from a formula.

Description

These matrices can be given to the hergm function as parameters. Generally, this function should
only be used if users are working with large networks and are planning to continually estimate the
model.

Usage

compute_multiplied_feature_matrices(net, list_feature_matrices)

Arguments

net

a network object from which nodal covariates are extracted.

list_feature_matrices

Value

a list of feature adjacency matrices generated by get_list_sparse_feature_adjmat().

A list of sparse matrices of multiplied feature matrices that are needed for carrying our the first step
of the estimation if the covariates should be used.

compute_yule_coef 3

Examples
data(toyNet)

model_formula <- toyNet ~ edges + nodematch(”x") + nodematch("y")
list_feature_matrices <- get_list_sparse_feature_adjmat(toyNet, model_formula)
multiplied_feature_matrices <-

compute_multiplied_feature_matrices(net = toyNet,

list_feature_matrices = list_feature_matrices)

compute_yule_coef Compute Yule’s Phi-coefficient

Description

Compute Yule’s Phi-coefficient

Usage

compute_yule_coef(z_star, z)

Arguments

z_star a true block membership

z an estimated block membership
Value

Real value of Yule’s Phi-coefficient between the true and estimated block membership is returned.

Examples

data(toyNet)
compute_yule_coef(z_star = toyNet%v% "block”,
z = sample(c(1:4),size = 200,replace = TRUE))

4 draw_between_block_connection

draw_between_block_connection
Draw between-block connections.

Description

Draw between-block connections. There may be some edges that appear both in within- and
between-block links. The overlapped edges will be removed after this step.

Usage

draw_between_block_connection(
formula_for_simulation,
sorted_dataframe,
coef_between_block,
seed_edgelist_between = NULL,
use_fast_between_simulation = FALSE,
list_feature_matrices = NULL,
seed = NULL,
n_sim = 1,
prevent_duplicate = TRUE,
verbose = 0,
ergm_control = ergm::control.simulate.formula(),
output = "edgelist”,

Arguments

formula_for_simulation
formula for simulating a between-block network
sorted_dataframe
a data frame with the covariate information. The order must match the nodes in
the network and it must contain the coliumn ’vertex_id’ matching the network.
coef_between_block
a vector of between-block parameters. The order of the parameters should match
that of the formula.
seed_edgelist_between
a seed edgelist from which a between-block network is simulated.
use_fast_between_simulation
If TRUE, this function uses an effcient way to simulate a between-block network.
If the network is very large, you should consider using this option. Note that
when you use this, the first element of coef_between_block must be the edges
parameter.
list_feature_matrices
a list of feature adjacency matrices. This is used when use_fast_between_simulation.

draw_within_block_connection 5

seed seed value (integer) for the random number generator.

n_sim number of networks generated.

prevent_duplicate
If TRUE, the coefficient on nodematch("block") is set to be a very large negative
number in drawing between-block links, so that there will be (almost) no within-
block links.

verbose If this is TRUE/1, the program will print out additionalinformation about the
progress of simulation.

ergm_control auxiliary function as user interface for fine-tuning ERGM simulation

non

output Normally character, one of "network" (default), "stats", "edgelist", to determine
the output format.

Additional arguments, to be passed to lower-level functions

Value

A network.list object of the n_sim networks.

Examples

data(toyNet)

Specify the model that you would like to estimate.
model_formula <- toyNet ~ edges + nodematch(”x") + nodematch("y")
Estimate the model
nodes_data <- data.frame(

vertex_id = 1:toyNetgaln,

x = toyNet %v% "x",

y = toyNet %v% "y",

block = toyNet %v% "block”
)
list_feature_matrices <-

get_list_sparse_feature_adjmat(toyNet, model_formula)
toyNet <- network::as.edgelist(toyNet)

draw_between_block_connection(formula_for_simulation = model_formula,
sorted_dataframe = nodes_data,
coef_between_block = c(-2,0.1,0.2),
n_sim = 10)

draw_within_block_connection
Draw within-block connections

Description

Draw within-block connections

Usage

draw_within_block_connection

draw_within_block_connection(

seed_network,

formula_for_simulation,
coef_within_block,

ergm_control,

output = "network”,

seed,
n_sim,
verbose,

Arguments

seed_network

a seed network from which a network will be simulated.

formula_for_simulation

formula for simulating a network

coef_within_block

ergm_control

output

seed

n_sim

verbose

Value

a vector of within-block parameters. The order of the parameters should match
that of the formula.

auxiliary function as user interface for fine-tuning ERGM simulation

Normally character, one of "network" (default), "stats", "edgelist", to determine
the output format.

seed value (integer) for the random number generator.

Number of networks to be randomly drawn from the given distribution on the
set of all networks.

If this is TRUE/1, the program will print out additionalinformation about the
progress of simulation.

Additional arguments, to be passed to lower-level functions

Simulated within-block connections, the output form depends on the parameter output.

Examples

data(toyNet)

model_formula <- toyNet ~ edges + nodematch(”x") + nodematch("y")
draw_within_block_connection(formula_for_simulation = model_formula,

coef_within_block = ¢(-2,0.1,0.2),
ergm_control = control.simulate(),
seed_network =toyNet,

verbose = TRUE,

output = "edgelist”,

seed = 123,

es timate_between_param

n_sim = 1)

estimate_between_param
Estimate between-block parameters by logit

Description

Estimate between-block parameters by logit

Usage

estimate_between_param(formula, network, block)

Arguments

formula formula for estimating between-block parameters

network network object

block a vector that represents which node belongs to which node
Value

’ergm’ object of the estimated model.

Examples

adj <- c(

c(o, 1, 0, 0, 1, @),
c(1, o, 1, 0, 0, 1),
c(o, 1, o0, 1, 1, 9),
c(o, o, 1, 0, 1, 1),
c(1, o, 1, 1, 0, 1),
c(o, 1, 0, 1, 1, @)
)

adj <- matrix(data = adj, nrow = 6, ncol = 6)
rownames(adj) <- as.character(1001:1006)
colnames(adj) <- as.character(1001:1006)

Use non-consecutive block names
block <- c(50, 70, 95, 50, 95, 70)

g <- network: :network(adj, matrix.type = "adjacency")
est <- estimate_between_param(

formula = g ~ edges,network = g, block = block
)

estimate_within_params

estimate_within_params

Estimate a within-block network model.

Description

Estimate a within-block network model.

Usage

estimate_within_params(

formula,

network,

z_memb,

number_cores = 1,

verbose = 1,

seeds = NULL,

method_second_step = c("MPLE", "MLE"),
offset_coef = NULL,

)
Arguments
formula a within network formula
network a network object
z_memb block memberships for each node

number_cores The number of CPU cores to use.

verbose A logical or an integer: if this is TRUE/1, the program will print out additional
information about the progress of estimation and simulation.
seeds seed value (integer) for the random number generator

method_second_step
If "MPLE" (the default), then the maximum pseudolikelihood estimator is re-
turned. If "MLE", then an approximate maximum likelihood estimator is re-

offset_coef

Value

turned.

a vector of model parameters to be fixed when estimation.(i.e., not estimated).

Additional arguments, to be passed to lower-level functions

’ergm’ object of the estimated model.

get_list_sparse_feature_adjmat

Examples

adj <- c(

c(o, 1, 0, 0, 1, @),
c(1l, o, 1, @0, 0, 1),
c(o, 1, o0, 1, 1, @),
c(o, o, 1, 0, 1, 1),
c(l, o0, 1, 1, 0, 1),
c(o, 1, 0, 1, 1, @)
)

adj <- matrix(data = adj, nrow = 6, ncol = 6)
rownames(adj) <- as.character(1001:1006)
colnames(adj) <- as.character(1001:1006)

Use non-consecutive block names
block <- c(50, 70, 95, 50, 95, 70)

g <- network::network(adj, matrix.type = "adjacency")

est <- estimate_within_params(
formula = g ~ edges,
network = g,
z_memb = block,
parallel = FALSE,
verbose = 0,
initial_estimate = NULL,
seeds = NULL,
method_second_step = "MPLE"

get_list_sparse_feature_adjmat
Get a list of sparse feature adjacency matrix from a formula

Description

Get a list of sparse feature adjacency matrix from a formula

Usage

get_list_sparse_feature_adjmat(network, formula)

Arguments
network a network object from which nodal covariates are extracted.
formula a network model to be considered

Value

The list of sparse matrices of feature matrices that are used for the first step of the estimation.

10

Examples

data(toyNet)

model_formula <- toyNet ~ edges + nodematch(”x") + nodematch("y")

list_feature_matrices <-
get_list_sparse_feature_adjmat(toyNet, model_formula)

gof_bigergm

gof_bigergm Goodness of fit statistics for HERGM

Description

Goodness of fit statistics for HERGM

Usage

gof_bigergm(
net,
data_for_simulation,
list_feature_matrices,
colname_vertex_id,
colname_block_membership,
bigergm_results,

type = "full”,

ergm_control = ergm::control.simulate.formula(),
seed = NULL,

n_sim = 1,

prevent_duplicate = TRUE,
compute_geodesic_distance = FALSE,
start_from_observed = FALSE,

Arguments

net the target network
data_for_simulation

a dataframe with node-level covariates
list_feature_matrices

a list of feature adjacency matrices
colname_vertex_id

the name of the column that contains the node id
colname_block_membership

the name o the column that contains the block affiliation of each node

bigergm_results
a bigergm results object

gof_bigergm 11

type the type of evaluation to perform. Can take the values full or within. full
performs the evaluation on all edges, and within only considers within-block
edges.

ergm_control MCMC parameters as an instance of ergm.control

seed the seed to be passed to simulate_hergm

n_sim the number of simulations to employ for calculating goodness of fit

prevent_duplicate
see simulate_hergm
compute_geodesic_distance
if TRUE, the distribution of geodesic distances is also computed (considerably
increases computation time on large networks. FALSE by default.)
start_from_observed
if TRUE, MCMC uses the observed network as a starting point

Additional arguments, to be passed to lower-level functions

Value

gof_bigergm returns a list with two entries. The first entry ’original’ is another list of the net-
work stats, degree distribution, edgewise-shared partner distribution, and geodesic distance dis-
tribution (if compute_geodesic_distance = TRUE) of the observed network. The second entry is
called ’simulated’ is also list compiling the network stats, degree distribution, edgewise-shared part-
ner distribution, and geodesic distance distribution (if compute_geodesic_distance = TRUE) of all
simulated networks.

Examples

data(toyNet)

Specify the model that you would like to estimate.
model_formula <- toyNet ~ edges + nodematch(”x") + nodematch("y") + triangle
Estimate the model
nodes_data <- data.frame(
node_id = 1:toyNet$gals$n,
x = toyNet %v% "x",
y = toyNet %v% "y",
block = toyNet %v% "block”
)
list_feature_matrices <- bigergm::get_list_sparse_feature_adjmat(toyNet, model_formula)
estimate <- hergm(model_formula,n_clusters = 4)
gof_res <- bigergm::gof_bigergm(
toyNet,
list_feature_matrices = list_feature_matrices,
data_for_simulation = nodes_data,
colname_vertex_id = "node_id",
colname_block_membership = "block”,
bigergm_results = estimate,
n_sim = 100

12 hergm

hergm Hierarchical exponential-family random graph models (HERGMs)
with local dependence

Description

The function hergm estimates and simulates three classes of hierarchical exponential-family random
graph models.

Usage

hergm(
object,
n_clusters,
n_cores = 1,
block_membership = NULL,
estimate_parameters = TRUE,
verbose = 0,
n_MM_step_max = 100,
tol_MM_step = 1e-04,
initialization_method = 1,
use_infomap_python = FALSE,
virtualenv_python = "r-bigergm”,
seed_infomap = NULL,
weight_for_initialization = 1000,
seeds = NULL,
initialized_cluster_data = NULL,
method_second_step = "MPLE",
clustering_with_features = TRUE,
list_multiplied_feature_matrices = NULL,
fix_covariate_parameter = FALSE,
compute_pi = FALSE,
check_alpha_update = FALSE,
check_block_membership = FALSE,

cache = NULL,
)
Arguments
object A formula or bigergm class object. A bigergm is returned by hergm(). When
you pass a bigergm class object to hergm(), you can restart the MM step.
n_clusters The number of blocks. This must be specified by the user. When you pass a

"bigergm" class object to hergm(), you don’t have to specify this argument.

n_cores The number of CPU cores to use.

hergm 13

block_membership
The pre-specified block memberships for each node. If NULL, the latent commu-
nity structure is estimated, assuming that the number of communities is n_clusters.
estimate_parameters
If TRUE, both clustering and parameter estimation are implemented. If FALSE,
only clustering is executed.
verbose A logical or an integer: if this is TRUE/1, the program will print out additional
information about the progress of estimation and simulation. A higher value
yields lower level information.
n_MM_step_max The maximum number of MM iterations. Currently, no early stopping criteria is
introduced. Thus n_MM_step_max MM iterations are exactly implemented.
tol_MM_step Tolerance regarding the relative change of the lower bound of the likelihood
used to decide on the convergence of the clustering step
initialization_method
Cluster initialization method. If 1 (the default), igraph’s infomap is imple-
mented. If 2, the initial clusters are randomly uniformally selected. If 3, spectral
clustering is conducted.
use_infomap_python
If TRUE, the cluster initialization is implemented using Pythons’ infomap.
virtualenv_python
Which virtual environment should be used for the infomap algorithm?
seed_infomap seed value (integer) for the infomap algorithm, which can be used to initialize
the estimation of the blocks
weight_for_initialization
weight value used for cluster initialization. The higher this value, the more
weight is put on the initialized alpha.
seeds seed value (integer) for the random number generator
initialized_cluster_data
initialized cluster data from which the MM iterations begin. This can be either
a vector of block affiliations of each node or initialized cluster data by Python’s
infomap (given by .clu format).
method_second_step
If "MPLE" (the default), then the maximum pseudolikelihood estimator is im-
plemented when estimating the within-block network model. If "MLE", then an
approximate maximum likelihood estimator is conducted.
clustering_with_features
If TRUE, clustering is implemented using the discrete covariates specified in the

formula.
list_multiplied_feature_matrices

a list of multiplied feature adjacency matrices necessary for MM step. If NULL,

hergm() automatically calculates. Or you can calculate by compute_multiplied_feature_matrices()
fix_covariate_parameter

If TRUE, when estimating the within-block network model, parameters for co-

variates are fixed at the estimated of the between-block network model.
compute_pi If TRUE, this function keeps track of pi matrices at each MM iteration. If the

network is large, we strongly recommend to set to be FALSE.

14 hergm

check_alpha_update
If TRUE, this function keeps track of alpha matrices at each MM iteration. If the
network is large, we strongly recommend to set to be FALSE.

check_block_membership
If TRUE, this function keeps track of estimated block memberships at each MM
iteration.

cache a cachem cache object used to store intermediate calculations such as eigenvec-
tor decomposition results.

Additional arguments, to be passed to lower-level functions

Value
An object of class *bigergm’ including the results of the fitted model. These include:

call: call of the mode
partition: vector of the found partition of the nodes into cluster
initial_block: vector of the initial partition of the nodes into cluster

sbm_pi: Connection probabilities represented as an_clusters x n_clusters matrix from the first
stage of the estimation between all clusters

MM _list_z: list of cluster allocation for each node and each iteration

MM _list_alpha: list of posterior distributions of cluster allocations for all nodes for each iteration
MDM_change_in_alpha: change in "alpha’ for each iteration

MM_lower_bound: vector of the evidence lower bounds from the MM algorithm

alpha: matrix representing the converged posterior distributions of cluster allocations for all nodes
counter_e_step: integer number indicating the number of iterations carried out
adjacency_matrix: sparse matrix representing the adjacency matrix used for the estimation
estimation_status: character stating the status of the estimation

est_within: ergm object of the model for within cluster connections

est_between: ergm object of the model for between cluster connections

checkpoint: list of information to continue the estimation

membership_before_kmeans: vector of the found partition of the nodes into cluster before the
final check for bad clusters

estimate_parameters: binary value if the parameters in the second step of the algorithm should be
estimated or not

Examples

Load an embedded network object.
data(toyNet)

Specify the model that you would like to estimate.

model_formula <- toyNet ~ edges + nodematch(”x") + nodematch("y") + triangle
Estimate the model

hergm_res <- bigergm::hergm(

install_python_dependencies 15

object = model_formula,

The model you would like to estimate

n_clusters = 4,

The number of blocks

n_MM_step_max = 10,

The maximum number of MM algorithm steps
estimate_parameters = TRUE,

Perform parameter estimation after the block recovery step
clustering_with_features = TRUE,

Indicate that clustering must take into account nodematch on characteristics
check_block_membership = FALSE)

install_python_dependencies
Install optional Python dependencies

Description

Install Python dependencies needed for using the Python implementation of infomap

Usage
install_python_dependencies(envname = "r-bigergm”, method = "auto”, ...)
Arguments
envname The name, or full path, of the environment in which Python packages are to
be installed. When NULL (the default), the active environment as set by the
RETICULATE_PYTHON_ENYV variable will be used; if that is unset, then the
r-reticulate environment will be used.
method Installation method. By default, "auto" automatically finds a method that will
work in the local environment. Change the default to force a specific installation
method. Note that the "virtualenv" method is not available on Windows.
Additional arguments, to be passed to lower-level functions
Value

No return value, called for installing the Python dependencies *infomap’ and *numpy’

16 simulate_hergm

simulate_hergm Simulate a network

Description

Simulate a network

Usage

simulate_hergm(
formula_for_simulation,
data_for_simulation,
colname_vertex_id,
colname_block_membership,
seed_edgelist = NULL,
coef_within_block,
coef_between_block,
ergm_control = ergm::control.simulate.formula(),
seed = NULL,
directed = FALSE,
n_sim = 1,
output = "network”,
prevent_duplicate = TRUE,
use_fast_between_simulation = FALSE,
list_feature_matrices = NULL,
verbose = 0,

Arguments

formula_for_simulation

formula for simulating a network
data_for_simulation

a data frame that contains vertex id, block membership, and vertex features.
colname_vertex_id

a column name in the data frame for the vertex id
colname_block_membership

a column name in the data frame for the block membership

seed_edgelist an edgelist used for creating a seed network. It should have the "edgelist" class
coef_within_block
a vector of within-block parameters. The order of the parameters should match
that of the formula.
coef_between_block
a vector of between-block parameters. The order of the parameters should match
that of the formula without externality terms.

simulate_hergm

ergm_control
seed
directed
n_sim

output

17

auxiliary function as user interface for fine-tuning ERGM simulation
seed value (integer) for network simulation.

whether the simulated network is directed

number of networks generated

non

Normally character, one of "network" (default), "stats", "edgelist", to determine
the output format.

prevent_duplicate

If TRUE, the coefficient on nodematch("block") is set to be a very large negative
number in drawing between-block links, so that there will be (almost) no within-
block links.

use_fast_between_simulation

If TRUE, this function uses an effcient way to simulate a between-block network.
If the network is very large, you should consider using this option. Note that
when you use this, the first element of coef_between_block must be the edges
parameter.

list_feature_matrices

verbose

Value

a list of feature adjacency matrices. If use_fast_between_simulation, this
must be given.

If this is TRUE/1, the program will print out additional information about the
progress of simulation.

Additional arguments, to be passed to lower-level functions

Simulated networks, the output form depends on the parameter output (default is a list of net-

works).

Examples

data(toyNet)

Specify the model that you would like to estimate.
model_formula <- toyNet ~ edges + nodematch(”x") + nodematch("y") + triangle

Prepare a data frame that contains nodal id and covariates.

nodes_data <-
data.frame(

node_id = network: :network.vertex.names(toyNet),

block = network::get.vertex.attribute(toyNet, "block"”),
X = network::get.vertex.attribute(toyNet, "x"),

y = network::get.vertex.attribute(toyNet, "y")

)

The feature adjacency matrices
list_feature_matrices <- bigergm::get_list_sparse_feature_adjmat(toyNet, model_formula)

Simulate network stats
sim_stats <- bigergm::simulate_hergm(
formula_for_simulation = model_formula,

18 simulate_hergm_within

data_for_simulation = nodes_data,

Nodal data

colname_vertex_id = "node_id",

Name of the column containing node IDs
colname_block_membership = "block”,

Name of the column containing block IDs
coef_between_block = c(-4.5,0.8, 0.4),

The coefficients for the between connections
coef_within_block = ¢(-1.7,0.5,0.6,0.15),
n_sim = 10,

Number of simulations to return

output = "stats”,

Type of output

list_feature_matrices = list_feature_matrices
Information on the covariates

simulate_hergm_within Sample within cluster networks

Description

Obtains network statistics based on MCMC simulations including only the within-blocks connec-
tions.

Usage

simulate_hergm_within(
formula_for_simulation,
data_for_simulation,
colname_vertex_id,
colname_block_membership,
coef_within_block,
seed_edgelist = NULL,
output = "stats",
ergm_control = ergm::control.simulate.formula(),
seed = NULL,
n_sim = 1,
verbose = 0,

Arguments

formula_for_simulation
formula for simulating a network
data_for_simulation
a data frame that contains vertex id, block membership, and vertex features.

simulate_hergm_within 19

colname_vertex_id

a column name in the data frame for the vertex ids
colname_block_membership

a column name in the data frame for the block membership
coef_within_block

a vector of within-block parameters. The order of the parameters should match
that of the formula.

seed_edgelist an edgelist used for creating a seed network. It should have the "edgelist" class

output The desired output of the simulation (any of stats, network or edgelist).
Defaults to stats

ergm_control auxiliary function as user interface for fine-tuning ERGM simulation

seed seed value (integer) for network simulation.
n_sim number of networks generated
verbose If this is TRUE/1, the program will print out additional information about the

progress of simulation.

arguments to be passed to low level functions

Value

A ’data.frame’ object where the columns relate to the sufficient statistics specified in formula_for_simulation
and each row relates to one of the n_sim simulations.

Examples

data(toyNet)
Specify the model that you would like to estimate.
model_formula <- toyNet ~ edges + nodematch(”x") + nodematch("y")
Estimate the model
nodes_data <- data.frame(
node_id = 1:toyNetgaln,
x = toyNet %v% "x",
y = toyNet %v% "y",
block = toyNet %v% "block”
)
list_feature_matrices <-
get_list_sparse_feature_adjmat(toyNet, model_formula)
toyNet <- network::as.edgelist(toyNet)

simulate_hergm_within(formula_for_simulation = model_formula,
data_for_simulation = nodes_data,
colname_vertex_id = "node_id",
colname_block_membership = "block”,
coef_within_block = ¢c(-2,0.1,0.2),
n_sim = 10)

20 toyNet

toyNet A toy network to play bigergm with.

Description
This network has a clear cluster structure. The number of clusters is four, and which cluster each
node belongs to is defined in the variable "block".

Usage

toyNet

Format
A statnet’s network class object. It has three nodal features.

block block membership of each node
X a covariate. It has 10 labels.

y acovariate. It has 10 labels. ...

x and y are not variables with any particular meaning.

Index

x datasets
toyNet, 20

compute_multiplied_feature_matrices, 2
compute_yule_coef, 3

draw_between_block_connection, 4
draw_within_block_connection, 5

ergm, 14
estimate_between_param, 7

estimate_within_params, 8

get_list_sparse_feature_adjmat, 9
gof_bigergm, 10, 11

hergm, 2, 12
install_python_dependencies, 15
network.list, 5

simulate_hergm, 16
simulate_hergm_within, 18

toyNet, 20

21

	compute_multiplied_feature_matrices
	compute_yule_coef
	draw_between_block_connection
	draw_within_block_connection
	estimate_between_param
	estimate_within_params
	get_list_sparse_feature_adjmat
	gof_bigergm
	hergm
	install_python_dependencies
	simulate_hergm
	simulate_hergm_within
	toyNet
	Index

