Enjoy this brief demonstration of the regression module
# Create normal distributed data with mean = 0 and standard deviation = 1
## r = 0.5
<- MASS::mvrnorm(n=100,
data mu=c(0, 0),
Sigma=matrix(c(1, 0.5, 0.5, 1), 2),
empirical=TRUE)
# Add names
colnames(data) <- c("x","y")
# Correlation
::cor(data)[2]
stats#> [1] 0.5
# Regression
summary(stats::lm(y ~ x, data=data.frame(data)))
#>
#> Call:
#> stats::lm(formula = y ~ x, data = data.frame(data))
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.04822 -0.52733 0.08872 0.59843 1.86069
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 4.163e-18 8.704e-02 0.000 1
#> x 5.000e-01 8.748e-02 5.715 1.18e-07 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.8704 on 98 degrees of freedom
#> Multiple R-squared: 0.25, Adjusted R-squared: 0.2423
#> F-statistic: 32.67 on 1 and 98 DF, p-value: 1.18e-07
<- bfw::bfw(project.data = data,
mcmc y = "y",
x = "x",
saved.steps = 50000,
jags.model = "regression",
jags.seed = 100,
silent = TRUE)
# Print the results
round(mcmc$summary.MCMC[,3:7],3)
#> Mode ESS HDIlo HDIhi n
#> beta0[1]: Intercept -0.008 50000 -0.172 0.173 100
#> beta[1]: Y vs. X 0.492 51970 0.330 0.674 100
#> sigma[1]: Y vs. X 0.863 28840 0.760 1.005 100
#> zbeta0[1]: Intercept -0.008 50000 -0.172 0.173 100
#> zbeta[1]: Y vs. X 0.492 51970 0.330 0.674 100
#> zsigma[1]: Y vs. X 0.863 28840 0.760 1.005 100
#> R^2 (block: 1) 0.246 51970 0.165 0.337 100
# Create noise with mean = 10 / -10 and sd = 1
## r = -1.0
<- MASS::mvrnorm(n=2,
noise mu=c(10, -10),
Sigma=matrix(c(1, -1, -1, 1), 2),
empirical=TRUE)
# Combine data
<- rbind(data,noise) biased.data
# Correlation
::cor(biased.data)[2]
stats#> [1] -0.4984437
# Regression
summary(stats::lm(y ~ x, data=data.frame(biased.data)))
#>
#> Call:
#> stats::lm(formula = y ~ x, data = data.frame(biased.data))
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -5.2719 -0.8151 0.0270 0.8217 3.1083
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.09834 0.14868 -0.661 0.51
#> x -0.49844 0.08669 -5.750 9.75e-08 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 1.492 on 100 degrees of freedom
#> Multiple R-squared: 0.2484, Adjusted R-squared: 0.2409
#> F-statistic: 33.06 on 1 and 100 DF, p-value: 9.754e-08
<- bfw::bfw(project.data = biased.data,
mcmc.robust y = "y",
x = "x",
saved.steps = 50000,
jags.model = "regression",
jags.seed = 100,
run.robust = TRUE,
silent = TRUE)
# Print the results
round(mcmc.robust$summary.MCMC[,3:7],3)
#> Mode ESS HDIlo HDIhi n
#> beta0[1]: Intercept -0.026 29844 -0.204 0.141 102
#> beta[1]: Y vs. X 0.430 29549 0.265 0.604 102
#> sigma[1]: Y vs. X 0.671 16716 0.530 0.842 102
#> zbeta0[1]: Intercept 0.138 28442 0.042 0.244 102
#> zbeta[1]: Y vs. X 0.430 29549 0.265 0.604 102
#> zsigma[1]: Y vs. X 0.392 16716 0.310 0.492 102
#> R^2 (block: 1) 0.236 29549 0.145 0.331 102