CRAN Package Check Results for Maintainer ‘Martin Maechler <maechler at stat.math.ethz.ch>’

Last updated on 2024-11-08 00:50:00 CET.

Package ERROR WARN NOTE OK
Bessel 13
bitops 13
CLA 13
classGraph 13
cluster 3 10
cobs 2 11
copula 2 6 5
diptest 13
DPQ 1 12
DPQmpfr 13
expm 13
fracdiff 13
lokern 13
longmemo 2 1 10
lpridge 13
nor1mix 13
plugdensity 13
Rmpfr 3 10
robustbase 13
robustX 13
round 13
sca 13
sfsmisc 13
stabledist 13
supclust 13
VLMC 2 11

Package Bessel

Current CRAN status: OK: 13

Package bitops

Current CRAN status: OK: 13

Package CLA

Current CRAN status: OK: 13

Package classGraph

Current CRAN status: OK: 13

Package cluster

Current CRAN status: NOTE: 3, OK: 10

Additional issues

Intel M1mac

Version: 2.1.6
Check: tests
Result: NOTE Running ‘agnes-ex.R’ [3s/10s] Comparing ‘agnes-ex.Rout’ to ‘agnes-ex.Rout.save’ ... OK Running ‘clara-NAs.R’ Comparing ‘clara-NAs.Rout’ to ‘clara-NAs.Rout.save’ ... OK Running ‘clara-ex.R’ [3s/11s] Comparing ‘clara-ex.Rout’ to ‘clara-ex.Rout.save’ ... OK Running ‘clara-gower.R’ Running ‘clara.R’ [5s/18s] Comparing ‘clara.Rout’ to ‘clara.Rout.save’ ... OK Running ‘clusplot-out.R’ Comparing ‘clusplot-out.Rout’ to ‘clusplot-out.Rout.save’ ... OK Running ‘daisy-ex.R’ Comparing ‘daisy-ex.Rout’ to ‘daisy-ex.Rout.save’ ... OK Running ‘diana-boots.R’ Running ‘diana-ex.R’ Comparing ‘diana-ex.Rout’ to ‘diana-ex.Rout.save’ ... OK Running ‘ellipsoid-ex.R’ Comparing ‘ellipsoid-ex.Rout’ to ‘ellipsoid-ex.Rout.save’ ... OK Running ‘fanny-ex.R’ Comparing ‘fanny-ex.Rout’ to ‘fanny-ex.Rout.save’ ...194c194 < iterations 42 --- > iterations 45 Running ‘mona.R’ Comparing ‘mona.Rout’ to ‘mona.Rout.save’ ... OK Running ‘pam.R’ [79s/139s] Comparing ‘pam.Rout’ to ‘pam.Rout.save’ ... OK Running ‘silhouette-default.R’ [5s/18s] Comparing ‘silhouette-default.Rout’ to ‘silhouette-default.Rout.save’ ... OK Running ‘sweep-ex.R’ Flavor: r-devel-linux-x86_64-fedora-clang

Version: 2.1.6
Check: tests
Result: NOTE Running ‘agnes-ex.R’ Comparing ‘agnes-ex.Rout’ to ‘agnes-ex.Rout.save’ ... OK Running ‘clara-NAs.R’ Comparing ‘clara-NAs.Rout’ to ‘clara-NAs.Rout.save’ ... OK Running ‘clara-ex.R’ Comparing ‘clara-ex.Rout’ to ‘clara-ex.Rout.save’ ... OK Running ‘clara-gower.R’ Running ‘clara.R’ [5s/16s] Comparing ‘clara.Rout’ to ‘clara.Rout.save’ ... OK Running ‘clusplot-out.R’ Comparing ‘clusplot-out.Rout’ to ‘clusplot-out.Rout.save’ ... OK Running ‘daisy-ex.R’ Comparing ‘daisy-ex.Rout’ to ‘daisy-ex.Rout.save’ ... OK Running ‘diana-boots.R’ Running ‘diana-ex.R’ Comparing ‘diana-ex.Rout’ to ‘diana-ex.Rout.save’ ... OK Running ‘ellipsoid-ex.R’ Comparing ‘ellipsoid-ex.Rout’ to ‘ellipsoid-ex.Rout.save’ ... OK Running ‘fanny-ex.R’ Comparing ‘fanny-ex.Rout’ to ‘fanny-ex.Rout.save’ ...194c194 < iterations 42 --- > iterations 45 Running ‘mona.R’ Comparing ‘mona.Rout’ to ‘mona.Rout.save’ ... OK Running ‘pam.R’ [76s/213s] Comparing ‘pam.Rout’ to ‘pam.Rout.save’ ... OK Running ‘silhouette-default.R’ [5s/13s] Comparing ‘silhouette-default.Rout’ to ‘silhouette-default.Rout.save’ ... OK Running ‘sweep-ex.R’ Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 2.1.6
Check: tests
Result: NOTE Running 'agnes-ex.R' [2s] Comparing 'agnes-ex.Rout' to 'agnes-ex.Rout.save' ... OK Running 'clara-NAs.R' [0s] Comparing 'clara-NAs.Rout' to 'clara-NAs.Rout.save' ... OK Running 'clara-ex.R' [2s] Comparing 'clara-ex.Rout' to 'clara-ex.Rout.save' ... OK Running 'clara-gower.R' [0s] Running 'clara.R' [3s] Comparing 'clara.Rout' to 'clara.Rout.save' ... OK Running 'clusplot-out.R' [1s] Comparing 'clusplot-out.Rout' to 'clusplot-out.Rout.save' ... OK Running 'daisy-ex.R' [1s] Comparing 'daisy-ex.Rout' to 'daisy-ex.Rout.save' ... OK Running 'diana-boots.R' [2s] Running 'diana-ex.R' [0s] Comparing 'diana-ex.Rout' to 'diana-ex.Rout.save' ... OK Running 'ellipsoid-ex.R' [0s] Comparing 'ellipsoid-ex.Rout' to 'ellipsoid-ex.Rout.save' ... OK Running 'fanny-ex.R' [1s] Comparing 'fanny-ex.Rout' to 'fanny-ex.Rout.save' ...194c194 < iterations 43 --- > iterations 45 1056c1056 < Converged after 46 iterations, obj = 2665.982 --- > Converged after 44 iterations, obj = 2665.982 Running 'mona.R' [1s] Comparing 'mona.Rout' to 'mona.Rout.save' ... OK Running 'pam.R' [31s] Comparing 'pam.Rout' to 'pam.Rout.save' ... OK Running 'silhouette-default.R' [2s] Comparing 'silhouette-default.Rout' to 'silhouette-default.Rout.save' ... OK Running 'sweep-ex.R' [0s] Flavor: r-devel-windows-x86_64

Package cobs

Current CRAN status: ERROR: 2, OK: 11

Version: 1.3-8
Check: examples
Result: ERROR Running examples in ‘cobs-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: cobs-methods > ### Title: Methods for COBS Objects > ### Aliases: coef.cobs fitted.cobs knots.cobs print.cobs residuals.cobs > ### summary.cobs > ### Keywords: print > > ### ** Examples > > example(cobs) cobs> x <- seq(-1,3,,150) cobs> y <- (f.true <- pnorm(2*x)) + rnorm(150)/10 cobs> ## specify pointwise constraints (boundary conditions) cobs> con <- rbind(c( 1,min(x),0), # f(min(x)) >= 0 cobs+ c(-1,max(x),1), # f(max(x)) <= 1 cobs+ c(0, 0, 0.5))# f(0) = 0.5 cobs> ## obtain the median REGRESSION B-spline using automatically selected knots cobs> Rbs <- cobs(x,y, constraint= "increase", pointwise = con) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Warning in cobs(x, y, constraint = "increase", pointwise = con) : drqssbc2(): Not all flags are normal (== 1), ifl : 21 cobs> Rbs COBS regression spline (degree = 2) from call: cobs(x = x, y = y, constraint = "increase", pointwise = con) **** ERROR in algorithm: ifl = 21 {tau=0.5}-quantile; dimensionality of fit: 5 from {5} x$knots[1:4]: -1.0000040, -0.2214765, 1.3892617, 3.0000040 cobs> plot(Rbs, lwd = 2.5) cobs> lines(spline(x, f.true), col = "gray40") cobs> lines(predict(cobs(x,y)), col = "blue") qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Warning in cobs(x, y) : drqssbc2(): Not all flags are normal (== 1), ifl : 21 cobs> mtext("cobs(x,y) # completely unconstrained", 3, col= "blue") cobs> ## compute the median SMOOTHING B-spline using automatically chosen lambda cobs> Sbs <- cobs(x,y, constraint="increase", pointwise= con, lambda= -1) Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Warning in min(sol1["k", i.keep]) : no non-missing arguments to min; returning Inf Error in drqssbc2(x, y, w, pw = pw, knots = knots, degree = degree, Tlambda = if (select.lambda) lambdaSet else lambda, : The problem is degenerate for the range of lambda specified. Calls: example ... source -> withVisible -> eval -> eval -> cobs -> drqssbc2 Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.3-8
Check: tests
Result: ERROR Running ‘0_pt-ex.R’ [3s/4s] Running ‘ex1.R’ [3s/5s] Running ‘ex2-long.R’ [5s/6s] Running ‘ex3.R’ [2s/3s] Comparing ‘ex3.Rout’ to ‘ex3.Rout.save’ ... OK Running ‘multi-constr.R’ [5s/7s] Running ‘roof.R’ [4s/5s] Comparing ‘roof.Rout’ to ‘roof.Rout.save’ ... OK Running ‘small-ex.R’ [3s/4s] Comparing ‘small-ex.Rout’ to ‘small-ex.Rout.save’ ... OK Running ‘spline-ex.R’ [2s/3s] Comparing ‘spline-ex.Rout’ to ‘spline-ex.Rout.save’ ... OK Running ‘temp.R’ [3s/4s] Comparing ‘temp.Rout’ to ‘temp.Rout.save’ ... OK Running ‘wind.R’ [4s/5s] Running the tests in ‘tests/ex1.R’ failed. Complete output: > #### OOps! Running this in 'CMD check' or in *R* __for the first time__ > #### ===== gives a wrong result (at the end) than when run a 2nd time > ####-- problem disappears with introduction of if (psw) call ... in Fortran > > suppressMessages(library(cobs)) > options(digits = 6) > if(!dev.interactive(orNone=TRUE)) pdf("ex1.pdf") > > source(system.file("util.R", package = "cobs")) > > ## Simple example from example(cobs) > set.seed(908) > x <- seq(-1,1, len = 50) > f.true <- pnorm(2*x) > y <- f.true + rnorm(50)/10 > ## specify constraints (boundary conditions) > con <- rbind(c( 1,min(x),0), + c(-1,max(x),1), + c( 0, 0, 0.5)) > ## obtain the median *regression* B-spline using automatically selected knots > coR <- cobs(x,y,constraint = "increase", pointwise = con) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Warning message: In cobs(x, y, constraint = "increase", pointwise = con) : drqssbc2(): Not all flags are normal (== 1), ifl : 21 > summaryCobs(coR) List of 24 $ call : language cobs(x = x, y = y, constraint = "increase", pointwise = con) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "increase" $ ic : chr "AIC" $ pointwise : num [1:3, 1:3] 1 -1 0 -1 1 0 0 1 0.5 $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:50] -1 -0.959 -0.918 -0.878 -0.837 ... $ y : num [1:50] 0.2254 0.0916 0.0803 -0.0272 -0.0454 ... $ resid : num [1:50] 0.148 0.019 0.0105 -0.0962 -0.1156 ... $ fitted : num [1:50] 0.0774 0.0726 0.0698 0.069 0.0702 ... $ coef : num [1:4] 0.0774 0.0226 0.8067 1.074 $ knots : num [1:3] -1 -0.224 1 $ k0 : num 4 $ k : num 4 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 6.19 $ lambda : num 0 $ icyc : int 1 $ ifl : int 21 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 -0.02569206 0.0153529 0.0773974 0.139442 0.180487 2 -0.02467377 0.0149258 0.0747853 0.134645 0.174244 3 -0.02343992 0.0148223 0.0726602 0.130498 0.168760 4 -0.02198644 0.0150449 0.0710223 0.127000 0.164031 5 -0.02030765 0.0155971 0.0698714 0.124146 0.160050 6 -0.01839614 0.0164832 0.0692075 0.121932 0.156811 7 -0.01624274 0.0177089 0.0690308 0.120353 0.154304 8 -0.01383648 0.0192806 0.0693410 0.119401 0.152519 9 -0.01116467 0.0212061 0.0701384 0.119071 0.151441 10 -0.00821304 0.0234939 0.0714227 0.119352 0.151059 11 -0.00496594 0.0261535 0.0731942 0.120235 0.151354 12 -0.00140661 0.0291949 0.0754527 0.121711 0.152312 13 0.00248257 0.0326287 0.0781983 0.123768 0.153914 14 0.00671972 0.0364659 0.0814309 0.126396 0.156142 15 0.01132316 0.0407175 0.0851506 0.129584 0.158978 16 0.01631107 0.0453944 0.0893573 0.133320 0.162404 17 0.02170124 0.0505073 0.0940511 0.137595 0.166401 18 0.02751079 0.0560665 0.0992320 0.142397 0.170953 19 0.03375595 0.0620819 0.1048999 0.147718 0.176044 20 0.04045190 0.0685624 0.1110549 0.153547 0.181658 21 0.04761262 0.0755166 0.1176969 0.159877 0.187781 22 0.05525079 0.0829521 0.1248260 0.166700 0.194401 23 0.06337769 0.0908757 0.1324422 0.174009 0.201507 24 0.07200318 0.0992932 0.1405454 0.181798 0.209088 25 0.08113560 0.1082098 0.1491357 0.190062 0.217136 26 0.09078179 0.1176295 0.1582130 0.198797 0.225644 27 0.10094701 0.1275555 0.1677774 0.207999 0.234608 28 0.11163490 0.1379900 0.1778288 0.217668 0.244023 29 0.12284746 0.1489342 0.1883674 0.227801 0.253887 30 0.13458491 0.1603882 0.1993929 0.238398 0.264201 31 0.14684569 0.1723511 0.2109056 0.249460 0.274965 32 0.15962625 0.1848207 0.2229052 0.260990 0.286184 33 0.17292100 0.1977938 0.2353920 0.272990 0.297863 34 0.18672210 0.2112655 0.2483658 0.285466 0.310009 35 0.20101931 0.2252297 0.2618267 0.298424 0.322634 36 0.21579978 0.2396787 0.2757746 0.311870 0.335749 37 0.23104789 0.2546031 0.2902096 0.325816 0.349371 38 0.24674505 0.2699916 0.3051316 0.340272 0.363518 39 0.26286963 0.2858313 0.3205407 0.355250 0.378212 40 0.27927345 0.3019880 0.3363239 0.370660 0.393374 41 0.29546082 0.3179864 0.3520365 0.386087 0.408612 42 0.31139379 0.3337855 0.3676333 0.401481 0.423873 43 0.32708550 0.3493933 0.3831143 0.416835 0.439143 44 0.34254943 0.3648179 0.3984794 0.432141 0.454409 45 0.35779910 0.3800674 0.4137287 0.447390 0.469658 46 0.37284780 0.3951499 0.4288622 0.462574 0.484877 47 0.38770842 0.4100730 0.4438798 0.477687 0.500051 48 0.40239320 0.4248442 0.4587815 0.492719 0.515170 49 0.41691367 0.4394703 0.4735674 0.507665 0.530221 50 0.43128050 0.4539579 0.4882375 0.522517 0.545195 51 0.44550348 0.4683128 0.5027918 0.537271 0.560080 52 0.45959144 0.4825403 0.5172301 0.551920 0.574869 53 0.47355229 0.4966451 0.5315527 0.566460 0.589553 54 0.48739298 0.5106315 0.5457594 0.580887 0.604126 55 0.50111956 0.5245032 0.5598503 0.595197 0.618581 56 0.51473718 0.5382631 0.5738253 0.609388 0.632913 57 0.52825014 0.5519139 0.5876845 0.623455 0.647119 58 0.54166189 0.5654577 0.6014278 0.637398 0.661194 59 0.55497510 0.5788960 0.6150553 0.651215 0.675136 60 0.56819166 0.5922301 0.6285670 0.664904 0.688942 61 0.58131273 0.6054605 0.6419628 0.678465 0.702613 62 0.59433873 0.6185876 0.6552428 0.691898 0.716147 63 0.60726940 0.6316113 0.6684069 0.705203 0.729544 64 0.62010376 0.6445308 0.6814552 0.718380 0.742807 65 0.63284018 0.6573453 0.6943876 0.731430 0.755935 66 0.64547632 0.6700533 0.7072042 0.744355 0.768932 67 0.65800921 0.6826530 0.7199050 0.757157 0.781801 68 0.67043520 0.6951423 0.7324899 0.769838 0.794545 69 0.68274995 0.7075185 0.7449590 0.782400 0.807168 70 0.69494850 0.7197786 0.7573122 0.794846 0.819676 71 0.70702523 0.7319193 0.7695496 0.807180 0.832074 72 0.71897385 0.7439368 0.7816712 0.819406 0.844369 73 0.73078747 0.7558269 0.7936769 0.831527 0.856566 74 0.74245861 0.7675851 0.8055668 0.843548 0.868675 75 0.75397921 0.7792066 0.8173408 0.855475 0.880702 76 0.76534070 0.7906862 0.8289990 0.867312 0.892657 77 0.77653408 0.8020185 0.8405413 0.879064 0.904549 78 0.78754996 0.8131979 0.8519678 0.890738 0.916386 79 0.79837866 0.8242185 0.8632785 0.902338 0.928178 80 0.80901036 0.8350744 0.8744733 0.913872 0.939936 81 0.81943516 0.8457597 0.8855523 0.925345 0.951669 82 0.82964324 0.8562684 0.8965154 0.936762 0.963388 83 0.83962502 0.8665947 0.9073627 0.948131 0.975100 84 0.84937122 0.8767332 0.9180941 0.959455 0.986817 85 0.85887309 0.8866785 0.9287098 0.970741 0.998546 86 0.86812243 0.8964257 0.9392095 0.981993 1.010297 87 0.87711179 0.9059703 0.9495934 0.993217 1.022075 88 0.88583447 0.9153083 0.9598615 1.004415 1.033889 89 0.89428462 0.9244361 0.9700138 1.015591 1.045743 90 0.90245726 0.9333508 0.9800502 1.026749 1.057643 91 0.91034831 0.9420499 0.9899707 1.037891 1.069593 92 0.91795453 0.9505315 0.9997754 1.049019 1.081596 93 0.92527350 0.9587940 1.0094643 1.060135 1.093655 94 0.93230358 0.9668366 1.0190373 1.071238 1.105771 95 0.93904380 0.9746586 1.0284945 1.082330 1.117945 96 0.94549385 0.9822598 1.0378359 1.093412 1.130178 97 0.95165390 0.9896403 1.0470614 1.104482 1.142469 98 0.95752462 0.9968006 1.0561710 1.115541 1.154817 99 0.96310704 1.0037413 1.0651648 1.126588 1.167223 100 0.96840246 1.0104631 1.0740428 1.137623 1.179683 knots : [1] -1.00000 -0.22449 1.00000 coef : [1] 0.0773974 0.0225871 0.8067413 1.0740429 > coR1 <- cobs(x,y,constraint = "increase", pointwise = con, degree = 1) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... Warning message: In cobs(x, y, constraint = "increase", pointwise = con, degree = 1) : drqssbc2(): Not all flags are normal (== 1), ifl : 20 > summary(coR1) COBS regression spline (degree = 1) from call: cobs(x = x, y = y, constraint = "increase", degree = 1, pointwise = con) **** ERROR in algorithm: ifl = 20 {tau=0.5}-quantile; dimensionality of fit: 3 from {3} x$knots[1:3]: -1.000002, -0.632653, 1.000002 with 3 pointwise constraints coef[1:3]: 0.0781509, 0.0820419, 1.1196697 R^2 = 94.72% ; empirical tau (over all): 25/50 = 0.5 (target tau= 0.5) > > ## compute the median *smoothing* B-spline using automatically chosen lambda > coS <- cobs(x,y,constraint = "increase", pointwise = con, + lambda = -1, trace = 3) Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. loo.design2(): -> Xeq 51 x 22 (nz = 151 =^= 0.13%) Xieq 62 x 22 (nz = 224 =^= 0.16%) ........................ Error in drqssbc2(x, y, w, pw = pw, knots = knots, degree = degree, Tlambda = if (select.lambda) lambdaSet else lambda, : The problem is degenerate for the range of lambda specified. Calls: cobs -> drqssbc2 In addition: Warning message: In min(sol1["k", i.keep]) : no non-missing arguments to min; returning Inf Execution halted Running the tests in ‘tests/ex2-long.R’ failed. Complete output: > #### > suppressMessages(library(cobs)) > > source(system.file("util.R", package = "cobs")) > (doExtra <- doExtras()) [1] FALSE > source(system.file("test-tools-1.R", package="Matrix", mustWork=TRUE)) Loading required package: tools > showProc.time() Time (user system elapsed): 0.001 0 0.002 > > options(digits = 5) > if(!dev.interactive(orNone=TRUE)) pdf("ex2.pdf") > > set.seed(821) > x <- round(sort(rnorm(200)), 3) # rounding -> multiple values > sum(duplicated(x)) # 9 [1] 3 > y <- (fx <- exp(-x)) + rt(200,4)/4 > summaryCobs(cxy <- cobs(x,y, "decrease")) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease") $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : chr "AIC" $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0.72 -0.149 0 -0.195 0.545 ... $ fitted : num [1:200] 11.98 8.39 6.67 6.07 5.87 ... $ coef : num [1:5] 11.9769 3.5917 1.0544 0.0295 0.0295 $ knots : num [1:4] -2.557 -0.813 0.418 2.573 $ k0 : num 5 $ k : num 5 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 0 $ icyc : int 11 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 11.4448128 11.6875576 11.976923 12.26629 12.50903 2 10.9843366 11.2126114 11.484728 11.75684 11.98512 3 10.5344633 10.7489871 11.004712 11.26044 11.47496 4 10.0951784 10.2966768 10.536874 10.77707 10.97857 5 9.6664684 9.8556730 10.081215 10.30676 10.49596 6 9.2483213 9.4259693 9.637736 9.84950 10.02715 7 8.8407282 9.0075609 9.206435 9.40531 9.57214 8 8.4436848 8.6004453 8.787313 8.97418 9.13094 9 8.0571928 8.2046236 8.380369 8.55612 8.70355 10 7.6812627 7.8201015 7.985605 8.15111 8.28995 11 7.3159159 7.4468904 7.603020 7.75915 7.89012 12 6.9611870 7.0850095 7.232613 7.38022 7.50404 13 6.6171269 6.7344861 6.874385 7.01428 7.13164 14 6.2838041 6.3953578 6.528336 6.66131 6.77287 15 5.9613061 6.0676719 6.194466 6.32126 6.42763 16 5.6497392 5.7514863 5.872775 5.99406 6.09581 17 5.3492272 5.4468683 5.563262 5.67966 5.77730 18 5.0599086 5.1538933 5.265928 5.37796 5.47195 19 4.7819325 4.8726424 4.980774 5.08891 5.17961 20 4.5154542 4.6031999 4.707798 4.81240 4.90014 21 4.2606295 4.3456507 4.447001 4.54835 4.63337 22 4.0176099 4.1000771 4.198383 4.29669 4.37916 23 3.7865383 3.8665567 3.961943 4.05733 4.13735 24 3.5675443 3.6451602 3.737683 3.83021 3.90782 25 3.3607413 3.4359491 3.525601 3.61525 3.69046 26 3.1662231 3.2389744 3.325698 3.41242 3.48517 27 2.9840608 3.0542750 3.137974 3.22167 3.29189 28 2.8142997 2.8818753 2.962429 3.04298 3.11056 29 2.6569546 2.7217833 2.799063 2.87634 2.94117 30 2.5120031 2.5739870 2.647875 2.72176 2.78375 31 2.3793776 2.4384496 2.508867 2.57928 2.63836 32 2.2589520 2.3151025 2.382037 2.44897 2.50512 33 2.1505256 2.2038366 2.267386 2.33094 2.38425 34 2.0538038 2.1044916 2.164914 2.22534 2.27602 35 1.9677723 2.0162522 2.074043 2.13183 2.18031 36 1.8846710 1.9316617 1.987677 2.04369 2.09068 37 1.8024456 1.8486425 1.903712 1.95878 2.00498 38 1.7213655 1.7673410 1.822146 1.87695 1.92293 39 1.6417290 1.6879196 1.742982 1.79804 1.84423 40 1.5638322 1.6105393 1.666217 1.72189 1.76860 41 1.4879462 1.5353474 1.591852 1.64836 1.69576 42 1.4143040 1.4624707 1.519888 1.57731 1.62547 43 1.3430975 1.3920136 1.450324 1.50864 1.55755 44 1.2744792 1.3240589 1.383161 1.44226 1.49184 45 1.2085658 1.2586702 1.318397 1.37812 1.42823 46 1.1454438 1.1958944 1.256034 1.31617 1.36662 47 1.0851730 1.1357641 1.196072 1.25638 1.30697 48 1.0277900 1.0782992 1.138509 1.19872 1.24923 49 0.9733099 1.0235079 1.083347 1.14319 1.19338 50 0.9217268 0.9713870 1.030585 1.08978 1.13944 51 0.8730129 0.9219214 0.980223 1.03852 1.08743 52 0.8271160 0.8750827 0.932262 0.98944 1.03741 53 0.7839554 0.8308269 0.886700 0.94257 0.98945 54 0.7434158 0.7890916 0.843540 0.89799 0.94366 55 0.7053406 0.7497913 0.802779 0.85577 0.90022 56 0.6695233 0.7128138 0.764419 0.81602 0.85931 57 0.6357022 0.6780170 0.728459 0.77890 0.82121 58 0.6035616 0.6452289 0.694899 0.74457 0.78624 59 0.5724566 0.6139693 0.663455 0.71294 0.75445 60 0.5410437 0.5829503 0.632905 0.68286 0.72477 61 0.5094333 0.5521679 0.603110 0.65405 0.69679 62 0.4778879 0.5217649 0.574069 0.62637 0.67025 63 0.4466418 0.4918689 0.545782 0.59970 0.64492 64 0.4158910 0.4625864 0.518250 0.57391 0.62061 65 0.3857918 0.4340022 0.491472 0.54894 0.59715 66 0.3564634 0.4061813 0.465448 0.52471 0.57443 67 0.3279928 0.3791711 0.440179 0.50119 0.55236 68 0.3004403 0.3530042 0.415663 0.47832 0.53089 69 0.2738429 0.3277009 0.391903 0.45610 0.50996 70 0.2482184 0.3032707 0.368896 0.43452 0.48957 71 0.2235676 0.2797141 0.346644 0.41357 0.46972 72 0.1998762 0.2570233 0.325146 0.39327 0.45042 73 0.1771158 0.2351830 0.304402 0.37362 0.43169 74 0.1552452 0.2141706 0.284413 0.35466 0.41358 75 0.1342101 0.1939567 0.265178 0.33640 0.39615 76 0.1139444 0.1745054 0.246697 0.31889 0.37945 77 0.0943704 0.1557743 0.228971 0.30217 0.36357 78 0.0753996 0.1377153 0.211999 0.28628 0.34860 79 0.0569347 0.1202755 0.195781 0.27129 0.33463 80 0.0388708 0.1033980 0.180318 0.25724 0.32177 81 0.0210989 0.0870233 0.165609 0.24419 0.31012 82 0.0035089 0.0710917 0.151654 0.23222 0.29980 83 -0.0140062 0.0555449 0.138454 0.22136 0.29091 84 -0.0315470 0.0403283 0.126008 0.21169 0.28356 85 -0.0492034 0.0253928 0.114316 0.20324 0.27783 86 -0.0670524 0.0106968 0.103378 0.19606 0.27381 87 -0.0851561 -0.0037936 0.093195 0.19018 0.27155 88 -0.1035613 -0.0181039 0.083766 0.18564 0.27109 89 -0.1223000 -0.0322515 0.075091 0.18243 0.27248 90 -0.1413914 -0.0462467 0.067171 0.18059 0.27573 91 -0.1608432 -0.0600938 0.060005 0.18010 0.28085 92 -0.1806546 -0.0737923 0.053594 0.18098 0.28784 93 -0.2008180 -0.0873382 0.047936 0.18321 0.29669 94 -0.2213213 -0.1007247 0.043033 0.18679 0.30739 95 -0.2421494 -0.1139438 0.038884 0.19171 0.31992 96 -0.2632855 -0.1269863 0.035490 0.19797 0.33427 97 -0.2847123 -0.1398427 0.032850 0.20554 0.35041 98 -0.3064126 -0.1525038 0.030964 0.21443 0.36834 99 -0.3283696 -0.1649603 0.029833 0.22463 0.38804 100 -0.3505674 -0.1772037 0.029456 0.23611 0.40948 knots : [1] -2.557 -0.813 0.418 2.573 coef : [1] 11.976924 3.591747 1.054378 0.029456 0.029456 > 1 - sum(cxy $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 97.6% [1] 0.95969 > showProc.time() Time (user system elapsed): 0.441 0.003 0.604 > > if(doExtra) { + ## Interpolation + cxyI <- cobs(x,y, "decrease", knots = unique(x)) + ## takes quite long : 63 sec. (Pent. III, 700 MHz) --- this is because + ## each knot is added sequentially... {{improve!}} + + summaryCobs(cxyI)# only 7 knots remaining! + showProc.time() + } > > summaryCobs(cxy1 <- cobs(x,y, "decrease", lambda = 0.1)) List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease", lambda = 0.1) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : NULL $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0 -0.315 0 -0.161 0.586 ... $ fitted : num [1:200] 12.7 8.56 6.67 6.04 5.83 ... $ coef : num [1:22] 12.7 5.78 3.16 2.43 2.11 ... $ knots : num [1:20] -2.557 -1.34 -1.03 -0.901 -0.772 ... $ k0 : int 15 $ k : int 15 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 0.1 $ icyc : int 23 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 12.0912847 12.4849933 12.6970034 12.90901 13.30272 2 11.5452819 11.9166521 12.1166331 12.31661 12.68798 3 11.0146966 11.3650966 11.5537853 11.74247 12.09287 4 10.4995535 10.8303355 11.0084599 11.18658 11.51737 5 9.9998870 10.3123808 10.4806571 10.64893 10.96143 6 9.5157430 9.8112485 9.9703768 10.12951 10.42501 7 9.0471805 9.3269594 9.4776191 9.62828 9.90806 8 8.5942728 8.8595392 9.0023838 9.14523 9.41049 9 8.1571088 8.4090188 8.5446710 8.68032 8.93223 10 7.7357927 7.9754347 8.1044808 8.23353 8.47317 11 7.3304438 7.5588289 7.6818131 7.80480 8.03318 12 6.9411951 7.1592477 7.2766679 7.39409 7.61214 13 6.5681906 6.7767415 6.8890452 7.00135 7.20990 14 6.2115819 6.4113636 6.5189450 6.62653 6.82631 15 5.8715240 6.0631680 6.1663674 6.26957 6.46121 16 5.5481704 5.7322086 5.8313123 5.93042 6.11445 17 5.2416676 5.4185366 5.5137796 5.60902 5.78589 18 4.9521494 5.1221988 5.2137695 5.30534 5.47539 19 4.6797308 4.8432355 4.9312819 5.01933 5.18283 20 4.4245017 4.5816781 4.6663169 4.75096 4.90813 21 4.1865199 4.3375470 4.4188743 4.50020 4.65123 22 3.9658032 4.1108482 4.1889542 4.26706 4.41211 23 3.7623206 3.9015710 3.9765567 4.05154 4.19079 24 3.5759813 3.7096836 3.7816817 3.85368 3.98738 25 3.4043771 3.5329043 3.6021155 3.67133 3.79985 26 3.2347309 3.3585931 3.4252922 3.49199 3.61585 27 3.0652721 3.1848437 3.2492325 3.31362 3.43319 28 2.8962030 3.0117271 3.0739363 3.13615 3.25167 29 2.7276530 2.8392885 2.8994037 2.95952 3.07115 30 2.5596612 2.6675415 2.7256346 2.78373 2.89161 31 2.3944947 2.4988186 2.5549966 2.61117 2.71550 32 2.2444821 2.3455939 2.4000421 2.45449 2.55560 33 2.1114672 2.2097080 2.2626102 2.31551 2.41375 34 1.9954176 2.0911496 2.1427009 2.19425 2.28998 35 1.8963846 1.9899366 2.0403140 2.09069 2.18424 36 1.8125024 1.9041996 1.9535781 2.00296 2.09465 37 1.7347658 1.8248332 1.8733340 1.92183 2.01190 38 1.6620975 1.7506630 1.7983550 1.84605 1.93461 39 1.5945123 1.6816941 1.7286411 1.77559 1.86277 40 1.5278221 1.6138190 1.6601279 1.70644 1.79243 41 1.4573347 1.5423451 1.5881227 1.63390 1.71891 42 1.3839943 1.4682138 1.5135655 1.55892 1.64314 43 1.3227219 1.4063482 1.4513806 1.49641 1.58004 44 1.2787473 1.3619265 1.4067181 1.45151 1.53469 45 1.2488624 1.3317463 1.3763789 1.42101 1.50390 46 1.2168724 1.2994789 1.3439621 1.38845 1.47105 47 1.1806389 1.2628708 1.3071522 1.35143 1.43367 48 1.1401892 1.2219316 1.2659495 1.30997 1.39171 49 1.0941843 1.1754044 1.2191410 1.26288 1.34410 50 1.0326549 1.1134412 1.1569442 1.20045 1.28123 51 0.9535058 1.0339215 1.0772249 1.12053 1.20094 52 0.8632281 0.9433870 0.9865521 1.02972 1.10988 53 0.7875624 0.8676441 0.9107678 0.95389 1.03397 54 0.7267897 0.8069673 0.8501425 0.89332 0.97350 55 0.6673925 0.7477244 0.7909827 0.83424 0.91457 56 0.6072642 0.6877460 0.7310850 0.77442 0.85491 57 0.5471548 0.6278279 0.6712700 0.71471 0.79539 58 0.4995140 0.5804770 0.6240752 0.66767 0.74864 59 0.4686435 0.5499607 0.5937495 0.63754 0.71886 60 0.4531016 0.5348803 0.5789177 0.62296 0.70473 61 0.4381911 0.5206110 0.5649937 0.60938 0.69180 62 0.4199957 0.5032331 0.5480561 0.59288 0.67612 63 0.4036491 0.4879280 0.5333117 0.57870 0.66297 64 0.3952493 0.4807890 0.5268517 0.57291 0.65845 65 0.3926229 0.4796600 0.5265291 0.57340 0.66044 66 0.3900185 0.4787485 0.5265291 0.57431 0.66304 67 0.3870480 0.4776752 0.5264774 0.57528 0.66591 68 0.3738545 0.4665585 0.5164792 0.56640 0.65910 69 0.3432056 0.4380737 0.4891596 0.54025 0.63511 70 0.2950830 0.3922142 0.4445189 0.49682 0.59395 71 0.2295290 0.3291123 0.3827373 0.43636 0.53595 72 0.1670195 0.2693294 0.3244228 0.37952 0.48183 73 0.1216565 0.2269375 0.2836308 0.34032 0.44561 74 0.0934100 0.2019260 0.2603613 0.31880 0.42731 75 0.0787462 0.1907702 0.2510947 0.31142 0.42344 76 0.0658428 0.1813823 0.2435998 0.30582 0.42136 77 0.0538230 0.1727768 0.2368329 0.30089 0.41984 78 0.0427388 0.1649719 0.2307938 0.29662 0.41885 79 0.0325663 0.1579592 0.2254827 0.29301 0.41840 80 0.0232151 0.1517072 0.2208995 0.29009 0.41858 81 0.0145359 0.1461634 0.2170442 0.28792 0.41955 82 0.0063272 0.1412575 0.2139168 0.28658 0.42151 83 -0.0016568 0.1369034 0.2115173 0.28613 0.42469 84 -0.0096967 0.1330028 0.2098457 0.28669 0.42939 85 -0.0180957 0.1294496 0.2089021 0.28835 0.43590 86 -0.0272134 0.1260791 0.2086264 0.29117 0.44447 87 -0.0387972 0.1210358 0.2071052 0.29317 0.45301 88 -0.0534279 0.1135207 0.2034217 0.29332 0.46027 89 -0.0709531 0.1035871 0.1975762 0.29157 0.46611 90 -0.0912981 0.0912612 0.1895684 0.28788 0.47043 91 -0.1144525 0.0765465 0.1793985 0.28225 0.47325 92 -0.1404576 0.0594287 0.1670665 0.27470 0.47459 93 -0.1693951 0.0398791 0.1525723 0.26527 0.47454 94 -0.2013769 0.0178586 0.1359159 0.25397 0.47321 95 -0.2365365 -0.0066795 0.1170974 0.24087 0.47073 96 -0.2750210 -0.0337868 0.0961167 0.22602 0.46725 97 -0.3169840 -0.0635170 0.0729738 0.20946 0.46293 98 -0.3625797 -0.0959240 0.0476688 0.19126 0.45792 99 -0.4119579 -0.1310604 0.0202016 0.17146 0.45236 100 -0.4652595 -0.1689754 -0.0094278 0.15012 0.44640 knots : [1] -2.557 -1.340 -1.030 -0.901 -0.772 -0.586 -0.448 -0.305 -0.092 0.054 [11] 0.163 0.329 0.481 0.606 0.722 0.859 1.065 1.244 1.837 2.573 coef : [1] 12.6970048 5.7788265 3.1620633 2.4291174 2.1069607 1.8462166 [7] 1.6371062 1.4304905 1.3348346 1.1758220 0.9413974 0.7863913 [13] 0.5998958 0.5697029 0.5265291 0.5265291 0.5265291 0.2707227 [19] 0.2086712 0.2086712 -0.0094278 6.5257497 > 1 - sum(cxy1 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.2% [1] 0.96169 > > summaryCobs(cxy2 <- cobs(x,y, "decrease", lambda = 1e-2)) List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease", lambda = 0.01) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : NULL $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0 -0.146 0.1468 -0.0463 0.6868 ... $ fitted : num [1:200] 12.7 8.39 6.52 5.92 5.73 ... $ coef : num [1:22] 12.7 5.34 3.59 2.19 2.13 ... $ knots : num [1:20] -2.557 -1.34 -1.03 -0.901 -0.772 ... $ k0 : int 21 $ k : int 21 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 0.01 $ icyc : int 35 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 12.0477594 12.4997491 12.6970071 12.89427 13.34625 2 11.4687308 11.8950752 12.0811411 12.26721 12.69355 3 10.9090823 11.3113523 11.4869116 11.66247 12.06474 4 10.3688404 10.7485883 10.9143185 11.08005 11.45980 5 9.8480420 10.2067945 10.3633618 10.51993 10.87868 6 9.3467363 9.6859859 9.8340417 9.98210 10.32135 7 8.8649866 9.1861815 9.3263579 9.46653 9.78773 8 8.4028715 8.7074055 8.8403106 8.97322 9.27775 9 7.9604861 8.2496865 8.3758998 8.50211 8.79131 10 7.5379421 7.8130586 7.9331254 8.05319 8.32831 11 7.1353676 7.3975607 7.5119874 7.62641 7.88861 12 6.7529050 7.0032361 7.1124859 7.22174 7.47207 13 6.3907086 6.6301316 6.7346209 6.83911 7.07853 14 6.0489410 6.2782966 6.3783923 6.47849 6.70784 15 5.7277684 5.9477816 6.0438001 6.13982 6.35983 16 5.4273551 5.6386366 5.7308444 5.82305 6.03433 17 5.1478583 5.3509094 5.4395252 5.52814 5.73119 18 4.8894214 5.0846433 5.1698424 5.25504 5.45026 19 4.6521676 4.8398760 4.9217960 5.00372 5.19142 20 4.4361933 4.6166367 4.6953861 4.77414 4.95458 21 4.2415605 4.4149443 4.4906127 4.56628 4.73966 22 4.0682883 4.2348044 4.3074756 4.38015 4.54666 23 3.9163432 4.0762071 4.1459751 4.21574 4.37561 24 3.7856282 3.9391227 4.0061110 4.07310 4.22659 25 3.6683774 3.8159306 3.8803259 3.94472 4.09227 26 3.5214653 3.6636629 3.7257209 3.78778 3.92998 27 3.3383583 3.4756303 3.5355387 3.59545 3.73272 28 3.1192735 3.2518988 3.3097793 3.36766 3.50028 29 2.8643493 2.9925103 3.0484425 3.10437 3.23254 30 2.5736278 2.6974778 2.7515286 2.80558 2.92943 31 2.2696062 2.3893733 2.4416422 2.49391 2.61368 32 2.0718959 2.1879754 2.2386350 2.28929 2.40537 33 1.9979346 2.1107181 2.1599392 2.20916 2.32194 34 1.9710324 2.0809358 2.1288999 2.17686 2.28677 35 1.9261503 2.0335510 2.0804229 2.12729 2.23470 36 1.8645775 1.9698487 2.0157914 2.06173 2.16701 37 1.7927585 1.8961587 1.9412848 1.98641 2.08981 38 1.7116948 1.8133707 1.8577443 1.90212 2.00379 39 1.6214021 1.7214896 1.7651699 1.80885 1.90894 40 1.5242004 1.6229275 1.6660141 1.70910 1.80783 41 1.4229217 1.5205162 1.5631086 1.60570 1.70330 42 1.3194940 1.4161806 1.4583766 1.50057 1.59726 43 1.2442053 1.3402109 1.3821098 1.42401 1.52001 44 1.2075941 1.3030864 1.3447613 1.38644 1.48193 45 1.2023778 1.2975311 1.3390581 1.38059 1.47574 46 1.1914924 1.2863272 1.3277152 1.36910 1.46394 47 1.1698641 1.2642688 1.3054691 1.34667 1.44107 48 1.1375221 1.2313649 1.2723199 1.31327 1.40712 49 1.0934278 1.1866710 1.2273643 1.26806 1.36130 50 1.0300956 1.1228408 1.1633168 1.20379 1.29654 51 0.9459780 1.0382977 1.0785880 1.11888 1.21120 52 0.8492712 0.9412961 0.9814577 1.02162 1.11364 53 0.7724392 0.8643755 0.9044985 0.94462 1.03656 54 0.7154255 0.8074718 0.8476428 0.88781 0.97986 55 0.6587891 0.7510125 0.7912608 0.83151 0.92373 56 0.5994755 0.6918710 0.7321944 0.77252 0.86491 57 0.5383570 0.6309722 0.6713915 0.71181 0.80443 58 0.4898228 0.5827709 0.6233354 0.66390 0.75685 59 0.4588380 0.5521926 0.5929345 0.63368 0.72703 60 0.4438719 0.5377564 0.5787296 0.61970 0.71359 61 0.4293281 0.5239487 0.5652432 0.60654 0.70116 62 0.4110511 0.5066103 0.5483143 0.59002 0.68558 63 0.3944126 0.4911673 0.5333932 0.57562 0.67237 64 0.3857958 0.4839980 0.5268556 0.56971 0.66792 65 0.3830000 0.4829213 0.5265291 0.57014 0.67006 66 0.3802084 0.4820731 0.5265291 0.57099 0.67285 67 0.3770181 0.4810608 0.5264673 0.57187 0.67592 68 0.3616408 0.4680678 0.5145149 0.56096 0.66739 69 0.3254129 0.4343244 0.4818557 0.52939 0.63830 70 0.2683149 0.3798245 0.4284897 0.47715 0.58866 71 0.1904294 0.3047541 0.3546478 0.40454 0.51887 72 0.1179556 0.2354105 0.2866704 0.33793 0.45539 73 0.0689088 0.1897746 0.2425231 0.29527 0.41614 74 0.0432569 0.1678366 0.2222059 0.27658 0.40115 75 0.0359906 0.1645977 0.2207246 0.27685 0.40546 76 0.0301934 0.1628364 0.2207246 0.27861 0.41126 77 0.0245630 0.1611257 0.2207246 0.28032 0.41689 78 0.0191553 0.1594827 0.2207246 0.28197 0.42229 79 0.0139446 0.1578996 0.2207246 0.28355 0.42750 80 0.0088340 0.1563468 0.2207246 0.28510 0.43262 81 0.0036634 0.1547759 0.2207246 0.28667 0.43779 82 -0.0017830 0.1531211 0.2207246 0.28833 0.44323 83 -0.0077688 0.1513025 0.2207246 0.29015 0.44922 84 -0.0145948 0.1492286 0.2207246 0.29222 0.45604 85 -0.0225859 0.1468007 0.2207246 0.29465 0.46404 86 -0.0321107 0.1438739 0.2206774 0.29748 0.47347 87 -0.0445016 0.1389916 0.2190720 0.29915 0.48265 88 -0.0601227 0.1315395 0.2151851 0.29883 0.49049 89 -0.0788103 0.1215673 0.2090164 0.29647 0.49684 90 -0.1004844 0.1090993 0.2005661 0.29203 0.50162 91 -0.1251339 0.0941388 0.1898342 0.28553 0.50480 92 -0.1528032 0.0766725 0.1768206 0.27697 0.50644 93 -0.1835797 0.0566736 0.1615253 0.26638 0.50663 94 -0.2175834 0.0341058 0.1439484 0.25379 0.50548 95 -0.2549574 0.0089256 0.1240898 0.23925 0.50314 96 -0.2958592 -0.0189149 0.1019496 0.22281 0.49976 97 -0.3404537 -0.0494657 0.0775277 0.20452 0.49551 98 -0.3889062 -0.0827771 0.0508241 0.18443 0.49055 99 -0.4413769 -0.1188979 0.0218389 0.16258 0.48505 100 -0.4980173 -0.1578738 -0.0094279 0.13902 0.47916 knots : [1] -2.557 -1.340 -1.030 -0.901 -0.772 -0.586 -0.448 -0.305 -0.092 0.054 [11] 0.163 0.329 0.481 0.606 0.722 0.859 1.065 1.244 1.837 2.573 coef : [1] 12.697009 5.337850 3.591398 2.187733 2.133993 1.936435 1.631856 [8] 1.340650 1.340650 1.185401 0.931750 0.789326 0.598245 0.570221 [15] 0.526529 0.526529 0.526529 0.220725 0.220725 0.220725 -0.009428 [22] 46.342964 > 1 - sum(cxy2 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.2% (tiny bit better) [1] 0.96257 > > summaryCobs(cxy3 <- cobs(x,y, "decrease", lambda = 1e-6, nknots = 60)) List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease", nknots = 60, lambda = 1e-06) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : NULL $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0 0 0 -0.382 0.309 ... $ fitted : num [1:200] 12.7 8.24 6.67 6.26 6.11 ... $ coef : num [1:62] 12.7 7.69 6.09 4.35 3.73 3.73 2.74 2.57 2.57 2.25 ... $ knots : num [1:60] -2.56 -1.81 -1.73 -1.38 -1.23 ... $ k0 : int 61 $ k : int 61 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 1e-06 $ icyc : int 46 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 12.0247124 12.56890432 12.6970139 12.825123 13.36932 2 11.3797843 11.89599414 12.0175164 12.139039 12.65525 3 10.7668218 11.25721357 11.3726579 11.488102 11.97849 4 10.1860204 10.65259986 10.7624385 10.872277 11.33886 5 9.6375946 10.08219388 10.1868581 10.291522 10.73612 6 9.1217734 9.54603927 9.6459167 9.745794 10.17006 7 8.6387946 9.04418136 9.1396144 9.235048 9.64043 8 8.1888978 8.57666578 8.6679512 8.759237 9.14700 9 7.7723156 8.14353686 8.2309270 8.318317 8.68954 10 7.3892646 7.74483589 7.8285418 7.912248 8.26782 11 7.0399352 7.38059913 7.4607957 7.540992 7.88166 12 6.7244802 7.05085572 7.1276886 7.204521 7.53090 13 6.4430029 6.75562533 6.8292205 6.902816 7.21544 14 6.1955428 6.49491547 6.5653915 6.635868 6.93524 15 5.9820595 6.26871848 6.3362016 6.403685 6.69034 16 5.7696526 6.04428975 6.1089428 6.173596 6.44823 17 5.4339991 5.69759119 5.7596440 5.821697 6.08529 18 5.0454361 5.29908138 5.3587927 5.418504 5.67215 19 4.6993977 4.94405130 5.0016458 5.059240 5.30389 20 4.3963458 4.63268699 4.6883247 4.743962 4.98030 21 4.1365583 4.36504142 4.4188292 4.472617 4.70110 22 3.9202312 4.14115193 4.1931594 4.245167 4.46609 23 3.7474595 3.96103662 4.0113153 4.061594 4.27517 24 3.6182953 3.82478434 3.8733944 3.922005 4.12849 25 3.5335861 3.73343196 3.7804782 3.827524 4.02737 26 3.4937186 3.68729597 3.7328665 3.778437 3.97201 27 3.4752667 3.66292175 3.7070981 3.751274 3.93893 28 3.3043525 3.48641351 3.5292729 3.572132 3.75419 29 2.9458452 3.12249549 3.1640812 3.205667 3.38232 30 2.4899112 2.66132542 2.7016785 2.742031 2.91345 31 2.3652956 2.53186083 2.5710724 2.610284 2.77685 32 2.2382402 2.40029503 2.4384448 2.476594 2.63865 33 2.0486975 2.20653724 2.2436947 2.280852 2.43869 34 2.0511798 2.20522276 2.2414864 2.277750 2.43179 35 2.0553528 2.20601792 2.2414864 2.276955 2.42762 36 2.0385642 2.18623332 2.2209965 2.255760 2.40343 37 1.8391470 1.98414706 2.0182819 2.052417 2.19742 38 1.6312788 1.77395114 1.8075380 1.841125 1.98380 39 1.5314449 1.67192652 1.7049976 1.738069 1.87855 40 1.5208780 1.65927041 1.6918497 1.724429 1.86282 41 1.4986364 1.63513027 1.6672626 1.699395 1.83589 42 1.4498027 1.58470514 1.6164629 1.648221 1.78312 43 1.2247043 1.35830771 1.3897596 1.421211 1.55481 44 1.1772885 1.30980813 1.3410049 1.372202 1.50472 45 1.1781750 1.30997706 1.3410049 1.372033 1.50383 46 1.1786125 1.31005757 1.3410014 1.371945 1.50339 47 1.1644262 1.29555858 1.3264288 1.357299 1.48843 48 1.1223208 1.25286982 1.2836027 1.314336 1.44488 49 1.0583227 1.18805529 1.2185960 1.249137 1.37887 50 1.0360396 1.16504088 1.1954094 1.225778 1.35478 51 1.0366880 1.16516444 1.1954094 1.225654 1.35413 52 0.9728290 1.10089058 1.1310379 1.161185 1.28925 53 0.6458992 0.77387319 0.8039998 0.834127 0.96210 54 0.6278378 0.75589463 0.7860408 0.816187 0.94424 55 0.6233664 0.75144260 0.7815933 0.811744 0.93982 56 0.6203139 0.74853170 0.7787158 0.808900 0.93712 57 0.4831205 0.61171664 0.6419898 0.672263 0.80086 58 0.4152141 0.54435194 0.5747526 0.605153 0.73429 59 0.4143942 0.54419570 0.5747526 0.605309 0.73511 60 0.4133407 0.54399495 0.5747526 0.605510 0.73616 61 0.3912541 0.52305164 0.5540784 0.585105 0.71690 62 0.3615872 0.49479624 0.5261553 0.557514 0.69072 63 0.3595156 0.49440150 0.5261553 0.557909 0.69279 64 0.3572502 0.49396981 0.5261553 0.558341 0.69506 65 0.3545874 0.49346241 0.5261553 0.558848 0.69772 66 0.3515435 0.49288238 0.5261553 0.559428 0.70077 67 0.3482098 0.49224713 0.5261553 0.560063 0.70410 68 0.3447026 0.49157882 0.5261553 0.560732 0.70761 69 0.3265062 0.47651151 0.5118246 0.547138 0.69714 70 0.2579257 0.41132297 0.4474346 0.483546 0.63694 71 0.2081857 0.36515737 0.4021105 0.439064 0.59604 72 0.1349572 0.29569526 0.3335350 0.371375 0.53211 73 0.0020438 0.16674762 0.2055209 0.244294 0.40900 74 -0.0243664 0.14460810 0.1843868 0.224166 0.39314 75 -0.0362635 0.13720915 0.1780468 0.218884 0.39236 76 -0.0421115 0.13609478 0.1780468 0.219999 0.39820 77 -0.0482083 0.13493301 0.1780468 0.221161 0.40430 78 -0.0546034 0.13371440 0.1780468 0.222379 0.41070 79 -0.0610386 0.13248816 0.1780468 0.223605 0.41713 80 -0.0674722 0.13126221 0.1780468 0.224831 0.42357 81 -0.0740291 0.13001276 0.1780468 0.226081 0.43012 82 -0.0809567 0.12869267 0.1780468 0.227401 0.43705 83 -0.0885308 0.12724941 0.1780468 0.228844 0.44462 84 -0.0966886 0.12569491 0.1780468 0.230399 0.45278 85 -0.1053882 0.12403716 0.1780468 0.232056 0.46148 86 -0.1147206 0.12225885 0.1780468 0.233835 0.47081 87 -0.1248842 0.12032213 0.1780468 0.235771 0.48098 88 -0.1360096 0.11820215 0.1780468 0.237891 0.49210 89 -0.1480747 0.11590310 0.1780468 0.240190 0.50417 90 -0.1611528 0.11337745 0.1780053 0.242633 0.51716 91 -0.1772967 0.10838384 0.1756366 0.242889 0.52857 92 -0.1976403 0.09964452 0.1696291 0.239614 0.53690 93 -0.2221958 0.08715720 0.1599828 0.232808 0.54216 94 -0.2510614 0.07090314 0.1466976 0.222492 0.54446 95 -0.2844042 0.05085051 0.1297736 0.208697 0.54395 96 -0.3224450 0.02695723 0.1092109 0.191465 0.54087 97 -0.3654434 -0.00082617 0.0850093 0.170845 0.53546 98 -0.4136843 -0.03255395 0.0571689 0.146892 0.52802 99 -0.4674640 -0.06828261 0.0256897 0.119662 0.51884 100 -0.5270786 -0.10806856 -0.0094284 0.089212 0.50822 knots : [1] -2.557 -1.812 -1.726 -1.384 -1.233 -1.082 -1.046 -1.009 -0.932 -0.902 [11] -0.877 -0.838 -0.813 -0.765 -0.707 -0.665 -0.568 -0.498 -0.460 -0.413 [21] -0.347 -0.333 -0.299 -0.274 -0.226 -0.089 -0.024 -0.011 0.063 0.094 [31] 0.118 0.136 0.231 0.285 0.328 0.392 0.460 0.473 0.517 0.551 [41] 0.602 0.623 0.692 0.715 0.742 0.787 0.812 0.892 0.934 0.988 [51] 1.070 1.162 1.178 1.276 1.402 1.655 1.877 1.988 2.047 2.573 coef : [1] 12.6970155 7.6878537 6.0937652 4.3540061 3.7259911 3.7259911 [7] 2.7408131 2.5727608 2.5727608 2.2478639 2.2414864 2.2414864 [13] 2.2414864 2.2414864 2.2414864 1.9875889 1.6964374 1.6964374 [19] 1.6623718 1.6623718 1.3410049 1.3410049 1.3410049 1.3410049 [25] 1.3410049 1.3410049 1.1954094 1.1954094 1.1954094 1.1954094 [31] 0.9829296 0.8091342 0.7815933 0.7815933 0.7815933 0.5747526 [37] 0.5747526 0.5747526 0.5747526 0.5747526 0.5261553 0.5261553 [43] 0.5261553 0.5261553 0.5261553 0.5261553 0.5261553 0.5261553 [49] 0.5261553 0.5261553 0.4273578 0.3741431 0.2060752 0.1780468 [55] 0.1780468 0.1780468 0.1780468 0.1780468 0.1780468 0.1780468 [61] -0.0094285 432.6957871 > 1 - sum(cxy3 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.36% [1] 0.96502 > showProc.time() Time (user system elapsed): 0.153 0.004 0.176 > > cpuTime(cxy4 <- cobs(x,y, "decrease", lambda = 1e-6, nknots = 100))# ~ 3 sec. Time elapsed: 0.027 > 1 - sum(cxy4 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.443% [1] 0.96603 > > cpuTime(cxy5 <- cobs(x,y, "decrease", lambda = 1e-6, nknots = 150))# ~ 8.7 sec. Time elapsed: 0.03 > 1 - sum(cxy5 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.4396% [1] 0.96835 > showProc.time() Time (user system elapsed): 0.421 0 0.461 > > > ## regularly spaced x : > X <- seq(-1,1, len = 201) > xx <- c(seq(-1.1, -1, len = 11), X, + seq( 1, 1.1, len = 11)) > y <- (fx <- exp(-X)) + rt(201,4)/4 > summaryCobs(cXy <- cobs(X,y, "decrease")) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... List of 24 $ call : language cobs(x = X, y = y, constraint = "decrease") $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : chr "AIC" $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:201] -1 -0.99 -0.98 -0.97 -0.96 -0.95 -0.94 -0.93 -0.92 -0.91 ... $ y : num [1:201] 2.67 2.77 3.46 3.14 1.79 ... $ resid : num [1:201] 0 0.125 0.84 0.555 -0.77 ... $ fitted : num [1:201] 2.67 2.64 2.62 2.59 2.56 ... $ coef : num [1:4] 2.672 1.556 0.7 0.356 $ knots : num [1:3] -1 -0.2 1 $ k0 : num 4 $ k : num 4 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 100 $ lambda : num 0 $ icyc : int 9 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 2.46750 2.55064 2.67153 2.79242 2.87556 2 2.42251 2.50122 2.61568 2.73013 2.80884 3 2.37783 2.45240 2.56081 2.66923 2.74379 4 2.33345 2.40414 2.50694 2.60973 2.68043 5 2.28933 2.35645 2.45404 2.55164 2.61876 6 2.24548 2.30932 2.40214 2.49496 2.55879 7 2.20189 2.26274 2.35122 2.43970 2.50055 8 2.15855 2.21672 2.30129 2.38586 2.44402 9 2.11547 2.17124 2.25234 2.33344 2.38922 10 2.07265 2.12633 2.20438 2.28244 2.33611 11 2.03013 2.08199 2.15741 2.23283 2.28470 12 1.98791 2.03824 2.11142 2.18461 2.23494 13 1.94605 1.99510 2.06642 2.13775 2.18680 14 1.90459 1.95260 2.02241 2.09222 2.14023 15 1.86359 1.91078 1.97938 2.04799 2.09517 16 1.82311 1.86966 1.93734 2.00502 2.05157 17 1.78322 1.82929 1.89629 1.96328 2.00936 18 1.74397 1.78971 1.85622 1.92273 1.96847 19 1.70544 1.75096 1.81714 1.88332 1.92883 20 1.66769 1.71307 1.77904 1.84502 1.89039 21 1.63079 1.67608 1.74193 1.80779 1.85308 22 1.59478 1.64002 1.70581 1.77160 1.81684 23 1.55972 1.60493 1.67067 1.73642 1.78163 24 1.52564 1.57083 1.63653 1.70222 1.74741 25 1.49260 1.53773 1.60336 1.66899 1.71412 26 1.46062 1.50567 1.57118 1.63670 1.68175 27 1.42972 1.47466 1.53999 1.60533 1.65026 28 1.39994 1.44470 1.50979 1.57488 1.61964 29 1.37128 1.41581 1.48057 1.54533 1.58987 30 1.34375 1.38800 1.45234 1.51668 1.56093 31 1.31736 1.36126 1.42510 1.48893 1.53283 32 1.29211 1.33560 1.39884 1.46207 1.50556 33 1.26800 1.31101 1.37357 1.43612 1.47914 34 1.24500 1.28749 1.34928 1.41107 1.45356 35 1.22310 1.26502 1.32598 1.38694 1.42886 36 1.20228 1.24360 1.30367 1.36374 1.40505 37 1.18250 1.22319 1.28234 1.34150 1.38218 38 1.16372 1.20377 1.26200 1.32023 1.36028 39 1.14589 1.18532 1.24265 1.29998 1.33941 40 1.12894 1.16779 1.22428 1.28077 1.31962 41 1.11271 1.15106 1.20683 1.26259 1.30094 42 1.09639 1.13439 1.18963 1.24488 1.28287 43 1.07982 1.11760 1.17253 1.22747 1.26525 44 1.06303 1.10072 1.15553 1.21034 1.24803 45 1.04607 1.08378 1.13862 1.19346 1.23117 46 1.02898 1.06681 1.12181 1.17681 1.21463 47 1.01180 1.04982 1.10509 1.16037 1.19838 48 0.99458 1.03284 1.08847 1.14411 1.18237 49 0.97734 1.01589 1.07195 1.12801 1.16656 50 0.96011 0.99899 1.05552 1.11205 1.15092 51 0.94294 0.98216 1.03919 1.09621 1.13543 52 0.92585 0.96541 1.02295 1.08049 1.12005 53 0.90885 0.94877 1.00681 1.06485 1.10477 54 0.89197 0.93223 0.99076 1.04930 1.08956 55 0.87523 0.91581 0.97482 1.03382 1.07440 56 0.85865 0.89952 0.95896 1.01840 1.05928 57 0.84223 0.88337 0.94321 1.00304 1.04419 58 0.82598 0.86736 0.92755 0.98773 1.02911 59 0.80991 0.85150 0.91198 0.97246 1.01405 60 0.79403 0.83579 0.89651 0.95723 0.99899 61 0.77834 0.82023 0.88114 0.94205 0.98394 62 0.76284 0.80482 0.86586 0.92690 0.96888 63 0.74753 0.78956 0.85068 0.91180 0.95383 64 0.73241 0.77446 0.83559 0.89673 0.93878 65 0.71747 0.75950 0.82060 0.88171 0.92374 66 0.70271 0.74468 0.80571 0.86674 0.90871 67 0.68812 0.73001 0.79091 0.85182 0.89371 68 0.67368 0.71546 0.77621 0.83696 0.87874 69 0.65939 0.70104 0.76161 0.82217 0.86382 70 0.64523 0.68674 0.74710 0.80745 0.84896 71 0.63118 0.67254 0.73268 0.79282 0.83419 72 0.61722 0.65844 0.71836 0.77829 0.81951 73 0.60333 0.64441 0.70414 0.76388 0.80495 74 0.58948 0.63045 0.69002 0.74958 0.79055 75 0.57565 0.61654 0.67599 0.73544 0.77632 76 0.56181 0.60266 0.66205 0.72145 0.76230 77 0.54792 0.58879 0.64821 0.70764 0.74851 78 0.53395 0.57491 0.63447 0.69403 0.73500 79 0.51986 0.56100 0.62083 0.68065 0.72179 80 0.50563 0.54705 0.60728 0.66750 0.70892 81 0.49121 0.53302 0.59382 0.65462 0.69643 82 0.47657 0.51891 0.58046 0.64202 0.68435 83 0.46169 0.50468 0.56720 0.62972 0.67271 84 0.44652 0.49033 0.55403 0.61774 0.66155 85 0.43105 0.47584 0.54096 0.60609 0.65087 86 0.41526 0.46119 0.52799 0.59478 0.64072 87 0.39912 0.44638 0.51511 0.58383 0.63109 88 0.38264 0.43141 0.50233 0.57324 0.62202 89 0.36579 0.41626 0.48964 0.56302 0.61349 90 0.34858 0.40093 0.47705 0.55317 0.60552 91 0.33101 0.38542 0.46455 0.54368 0.59810 92 0.31307 0.36975 0.45215 0.53456 0.59123 93 0.29478 0.35390 0.43985 0.52580 0.58492 94 0.27615 0.33788 0.42764 0.51741 0.57914 95 0.25717 0.32170 0.41553 0.50936 0.57389 96 0.23787 0.30536 0.40352 0.50167 0.56917 97 0.21824 0.28888 0.39160 0.49431 0.56495 98 0.19830 0.27225 0.37977 0.48730 0.56125 99 0.17806 0.25547 0.36804 0.48062 0.55803 100 0.15752 0.23857 0.35641 0.47426 0.55531 knots : [1] -1.0 -0.2 1.0 coef : [1] 2.67153 1.55592 0.70045 0.35641 > 1 - sum(cXy $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 77.2% [1] 0.77644 > showProc.time() Time (user system elapsed): 0.099 0 0.101 > > (cXy.9 <- cobs(X,y, "decrease", tau = 0.9)) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.9) {tau=0.9}-quantile; dimensionality of fit: 6 from {6} x$knots[1:5]: -1.0, -0.6, -0.2, 0.2, 1.0 > (cXy.1 <- cobs(X,y, "decrease", tau = 0.1)) qbsks2(): Performing general knot selection ... WARNING! Since the number of 6 knots selected by AIC reached the upper bound during general knot selection, you might want to rerun cobs with a larger number of knots. Deleting unnecessary knots ... WARNING! Since the number of 6 knots selected by AIC reached the upper bound during general knot selection, you might want to rerun cobs with a larger number of knots. COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.1) {tau=0.1}-quantile; dimensionality of fit: 4 from {4} x$knots[1:3]: -1.0, 0.6, 1.0 > (cXy.99<- cobs(X,y, "decrease", tau = 0.99)) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.99) {tau=0.99}-quantile; dimensionality of fit: 4 from {4} x$knots[1:3]: -1.0, -0.2, 1.0 > (cXy.01<- cobs(X,y, "decrease", tau = 0.01)) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.01) {tau=0.01}-quantile; dimensionality of fit: 6 from {6} x$knots[1:5]: -1.0, -0.6, -0.2, 0.2, 1.0 > plot(X,y, xlim = range(xx), + main = "cobs(*, \"decrease\"), N=201, tau = 50% (Med.), 1,10, 90,99%") > lines(predict(cXy, xx), col = 2) > lines(predict(cXy.1, xx), col = 3) > lines(predict(cXy.9, xx), col = 3) > lines(predict(cXy.01, xx), col = 4) > lines(predict(cXy.99, xx), col = 4) > > showProc.time() Time (user system elapsed): 0.505 0.001 0.568 > > ## Interpolation > cpuTime(cXyI <- cobs(X,y, "decrease", knots = unique(X))) qbsks2(): Performing general knot selection ... Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cpuTime ... cobs -> qbsks2 -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% In addition: Warning message: In cobs(X, y, "decrease", knots = unique(X)) : The number of knots can't be equal to the number of unique x for degree = 2. 'cobs' has automatically deleted the middle knot. Timing stopped at: 0.703 0.007 0.928 Execution halted Running the tests in ‘tests/multi-constr.R’ failed. Complete output: > #### Examples which use the new feature of more than one 'constraint'. > > suppressMessages(library(cobs)) > > ## do *not* show platform info here (as have *.Rout.save), but in 0_pt-ex.R > options(digits = 6) > > if(!dev.interactive(orNone=TRUE)) pdf("multi-constr.pdf") > > source(system.file("util.R", package = "cobs")) > source(system.file(package="Matrix", "test-tools-1.R", mustWork=TRUE)) Loading required package: tools > ##--> tryCatch.W.E(), showProc.time(), assertError(), relErrV(), ... > Lnx <- Sys.info()[["sysname"]] == "Linux" > isMac <- Sys.info()[["sysname"]] == "Darwin" > x86 <- (arch <- Sys.info()[["machine"]]) == "x86_64" > noLdbl <- (.Machine$sizeof.longdouble <= 8) ## TRUE when --disable-long-double > ## IGNORE_RDIFF_BEGIN > Sys.info() sysname "Linux" release "6.10.11-amd64" version "#1 SMP PREEMPT_DYNAMIC Debian 6.10.11-1 (2024-09-22)" nodename "gimli2" machine "x86_64" login "hornik" user "hornik" effective_user "hornik" > noLdbl [1] FALSE > ## IGNORE_RDIFF_END > > > Rsq <- function(obj) { + stopifnot(inherits(obj, "cobs"), is.numeric(res <- obj$resid)) + 1 - sum(res^2)/obj$SSy + } > list_ <- function (...) `names<-`(list(...), vapply(sys.call()[-1L], as.character, "")) > is.cobs <- function(x) inherits(x, "cobs") > > set.seed(908) > x <- seq(-1,2, len = 50) > f.true <- pnorm(2*x) > y <- f.true + rnorm(50)/10 > plot(x,y); lines(x, f.true, col="gray", lwd=2, lty=3) > > ## constraint on derivative at right end: > (con <- rbind(c(2 , max(x), 0))) # f'(x_n) == 0 [,1] [,2] [,3] [1,] 2 2 0 > > ## Using 'trace = 3' --> 'trace = 2' inside drqssbc2() > > ## Regression splines (lambda = 0) > c2 <- cobs(x,y, trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) > c2i <- cobs(x,y, constraint = c("increase"), trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 2 x 3 (nz = 6 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 3 x 4 (nz = 9 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 5 x 6 (nz = 15 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 6 x 7 (nz = 18 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 4 x 5 (nz = 12 =^= 0.6%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 3 x 4 (nz = 9 =^= 0.75%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 3 x 4 (nz = 9 =^= 0.75%) loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 2 x 3 (nz = 6 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 3 x 4 (nz = 9 =^= 0.75%) Warning message: In cobs(x, y, constraint = c("increase"), trace = 3) : drqssbc2(): Not all flags are normal (== 1), ifl : 21 > c2c <- cobs(x,y, constraint = c("concave"), trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 1 x 3 (nz = 3 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 3 x 5 (nz = 9 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 4 x 6 (nz = 12 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 5 x 7 (nz = 15 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 3 x 5 (nz = 9 =^= 0.6%) > > c2IC <- cobs(x,y, constraint = c("inc", "concave"), trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 3 x 3 (nz = 9 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 5 x 4 (nz = 15 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 7 x 5 (nz = 21 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 9 x 6 (nz = 27 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 11 x 7 (nz = 33 =^= 0.43%) WARNING! Since the number of 6 knots selected by AIC reached the upper bound during general knot selection, you might want to rerun cobs with a larger number of knots. Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 9 x 6 (nz = 27 =^= 0.5%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 9 x 6 (nz = 27 =^= 0.5%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 9 x 6 (nz = 27 =^= 0.5%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 9 x 6 (nz = 27 =^= 0.5%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 7 x 5 (nz = 21 =^= 0.6%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 7 x 5 (nz = 21 =^= 0.6%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 7 x 5 (nz = 21 =^= 0.6%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 5 x 4 (nz = 15 =^= 0.75%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 5 x 4 (nz = 15 =^= 0.75%) loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 3 x 3 (nz = 9 =^= 1%) WARNING! Since the number of 6 knots selected by AIC reached the upper bound during general knot selection, you might want to rerun cobs with a larger number of knots. loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 5 x 4 (nz = 15 =^= 0.75%) Warning message: In cobs(x, y, constraint = c("inc", "concave"), trace = 3) : drqssbc2(): Not all flags are normal (== 1), ifl : 20 > ## here, it's the same as just "i": > all.equal(fitted(c2i), fitted(c2IC)) [1] TRUE > > c1 <- cobs(x,y, degree = 1, trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) > c1i <- cobs(x,y, degree = 1, constraint = c("increase"), trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) Xieq 1 x 2 (nz = 2 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 2 x 3 (nz = 4 =^= 0.67%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 3 x 4 (nz = 6 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 4 x 5 (nz = 8 =^= 0.4%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Xieq 5 x 6 (nz = 10 =^= 0.33%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 3 x 4 (nz = 6 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 3 x 4 (nz = 6 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 3 x 4 (nz = 6 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 4 x 5 (nz = 8 =^= 0.4%) > c1c <- cobs(x,y, degree = 1, constraint = c("concave"), trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 1 x 3 (nz = 3 =^= 1%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 2 x 4 (nz = 6 =^= 0.75%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 3 x 5 (nz = 9 =^= 0.6%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Xieq 4 x 6 (nz = 12 =^= 0.5%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 1 x 3 (nz = 3 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 1 x 3 (nz = 3 =^= 1%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 2 x 4 (nz = 6 =^= 0.75%) Warning message: In cobs(x, y, degree = 1, constraint = c("concave"), trace = 3) : drqssbc2(): Not all flags are normal (== 1), ifl : 21 > > plot(c1) > lines(predict(c1i), col="forest green") > all.equal(fitted(c1), fitted(c1i), tol = 1e-9)# but not 1e-10 [1] TRUE > > ## now gives warning (not error): > c1IC <- cobs(x,y, degree = 1, constraint = c("inc", "concave"), trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) Xieq 1 x 2 (nz = 2 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 3 x 3 (nz = 7 =^= 0.78%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 5 x 4 (nz = 12 =^= 0.6%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 7 x 5 (nz = 17 =^= 0.49%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Xieq 9 x 6 (nz = 22 =^= 0.41%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 5 x 4 (nz = 12 =^= 0.6%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 5 x 4 (nz = 12 =^= 0.6%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 5 x 4 (nz = 12 =^= 0.6%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 7 x 5 (nz = 17 =^= 0.49%) Warning message: In l1.design2(x, w, constraint, ptConstr, knots, pw, nrq = n, nl1, : too few knots ==> nk <= 4; could not add constraint 'concave' > > cp2 <- cobs(x,y, pointwise = con, trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 2 x 3 (nz = 6 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 2 x 5 (nz = 6 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 2 x 6 (nz = 6 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 2 x 7 (nz = 6 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 2 x 4 (nz = 6 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 2 x 5 (nz = 6 =^= 0.6%) Warning message: In cobs(x, y, pointwise = con, trace = 3) : drqssbc2(): Not all flags are normal (== 1), ifl : 21 > > ## Here, warning ".. 'ifl'.. " on *some* platforms (e.g. Windows 32bit) : > r2i <- tryCatch.W.E( cobs(x,y, constraint = "increase", pointwise = con) ) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... > cp2i <- r2i$value > ## IGNORE_RDIFF_BEGIN > r2i$warning <simpleWarning in cobs(x, y, constraint = "increase", pointwise = con): drqssbc2(): Not all flags are normal (== 1), ifl : 21> > ## IGNORE_RDIFF_END > ## when plotting it, we see that it gave a trivial constant!! > cp2c <- cobs(x,y, constraint = "concave", pointwise = con, trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 3 x 3 (nz = 9 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 4 x 4 (nz = 12 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 5 x 5 (nz = 15 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 6 x 6 (nz = 18 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 7 x 7 (nz = 21 =^= 0.43%) Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 4 x 4 (nz = 12 =^= 0.75%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 4 x 4 (nz = 12 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 5 x 5 (nz = 15 =^= 0.6%) > > ## now gives warning (not error): but no warning on M1 mac -> IGNORE > ## IGNORE_RDIFF_BEGIN > cp2IC <- cobs(x,y, constraint = c("inc", "concave"), pointwise = con, trace = 3) qbsks2(): Performing general knot selection ... loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 5 x 3 (nz = 15 =^= 1%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 7 x 4 (nz = 21 =^= 0.75%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 9 x 5 (nz = 27 =^= 0.6%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 11 x 6 (nz = 33 =^= 0.5%) loo.design2(): -> Xeq 50 x 7 (nz = 150 =^= 0.43%) Xieq 13 x 7 (nz = 39 =^= 0.43%) WARNING! Since the number of 6 knots selected by AIC reached the upper bound during general knot selection, you might want to rerun cobs with a larger number of knots. Deleting unnecessary knots ... loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 11 x 6 (nz = 33 =^= 0.5%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 11 x 6 (nz = 33 =^= 0.5%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 11 x 6 (nz = 33 =^= 0.5%) loo.design2(): -> Xeq 50 x 6 (nz = 150 =^= 0.5%) Xieq 11 x 6 (nz = 33 =^= 0.5%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 9 x 5 (nz = 27 =^= 0.6%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 9 x 5 (nz = 27 =^= 0.6%) loo.design2(): -> Xeq 50 x 5 (nz = 150 =^= 0.6%) Xieq 9 x 5 (nz = 27 =^= 0.6%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 7 x 4 (nz = 21 =^= 0.75%) loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 7 x 4 (nz = 21 =^= 0.75%) loo.design2(): -> Xeq 50 x 3 (nz = 150 =^= 1%) Xieq 5 x 3 (nz = 15 =^= 1%) WARNING! Since the number of 6 knots selected by AIC reached the upper bound during general knot selection, you might want to rerun cobs with a larger number of knots. loo.design2(): -> Xeq 50 x 4 (nz = 150 =^= 0.75%) Xieq 7 x 4 (nz = 21 =^= 0.75%) Warning message: In cobs(x, y, constraint = c("inc", "concave"), pointwise = con, : drqssbc2(): Not all flags are normal (== 1), ifl : 20 > ## IGNORE_RDIFF_END > cp1 <- cobs(x,y, degree = 1, pointwise = con, trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) Xieq 2 x 2 (nz = 4 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 2 x 3 (nz = 4 =^= 0.67%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 2 x 4 (nz = 4 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 2 x 5 (nz = 4 =^= 0.4%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Xieq 2 x 6 (nz = 4 =^= 0.33%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 2 x 4 (nz = 4 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 2 x 4 (nz = 4 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 2 x 4 (nz = 4 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 2 x 5 (nz = 4 =^= 0.4%) > cp1i <- cobs(x,y, degree = 1, constraint = "increase", pointwise = con, trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) Xieq 3 x 2 (nz = 6 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 4 x 3 (nz = 8 =^= 0.67%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 5 x 4 (nz = 10 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 6 x 5 (nz = 12 =^= 0.4%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Xieq 7 x 6 (nz = 14 =^= 0.33%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 5 x 4 (nz = 10 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 5 x 4 (nz = 10 =^= 0.5%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 5 x 4 (nz = 10 =^= 0.5%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 6 x 5 (nz = 12 =^= 0.4%) > cp1c <- cobs(x,y, degree = 1, constraint = "concave", pointwise = con, trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) Xieq 2 x 2 (nz = 4 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 3 x 3 (nz = 7 =^= 0.78%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 4 x 4 (nz = 10 =^= 0.62%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 5 x 5 (nz = 13 =^= 0.52%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Xieq 6 x 6 (nz = 16 =^= 0.44%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 4 x 4 (nz = 10 =^= 0.62%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 4 x 4 (nz = 10 =^= 0.62%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 4 x 4 (nz = 10 =^= 0.62%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 5 x 5 (nz = 13 =^= 0.52%) > > cp1IC <- cobs(x,y, degree = 1, constraint = c("inc", "concave"), pointwise = con, trace = 3) qbsks2(): Performing general knot selection ... l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) Xieq 3 x 2 (nz = 6 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 5 x 3 (nz = 11 =^= 0.73%) l1.design2(): -> Xeq 50 x 4 (nz = 100 =^= 0.5%) Xieq 7 x 4 (nz = 16 =^= 0.57%) l1.design2(): -> Xeq 50 x 5 (nz = 100 =^= 0.4%) Xieq 9 x 5 (nz = 21 =^= 0.47%) l1.design2(): -> Xeq 50 x 6 (nz = 100 =^= 0.33%) Xieq 11 x 6 (nz = 26 =^= 0.39%) Deleting unnecessary knots ... l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 5 x 3 (nz = 11 =^= 0.73%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 5 x 3 (nz = 11 =^= 0.73%) l1.design2(): -> Xeq 50 x 2 (nz = 100 =^= 1%) Xieq 3 x 2 (nz = 6 =^= 1%) l1.design2(): -> Xeq 50 x 3 (nz = 100 =^= 0.67%) Xieq 5 x 3 (nz = 11 =^= 0.73%) Warning messages: 1: In l1.design2(x, w, constraint, ptConstr, knots, pw, nrq = n, nl1, : too few knots ==> nk <= 4; could not add constraint 'concave' 2: In l1.design2(x, w, constraint, ptConstr, knots, pw, nrq = n, nl1, : too few knots ==> nk <= 4; could not add constraint 'concave' > > ## Named list of all cobs() results above -- sort() collation order matters for ls() ! > (curLC <- Sys.getlocale("LC_COLLATE")) [1] "C" > Sys.setlocale("LC_COLLATE", "C") [1] "C" > cobsL <- mget(Filter(\(nm) is.cobs(.GlobalEnv[[nm]]), ls(patt="c[12p]")), + envir = .GlobalEnv) > Sys.setlocale("LC_COLLATE", curLC) # reverting [1] "C" > > knL <- lapply(cobsL, `[[`, "knots") > str(knL[order(lengths(knL))]) List of 16 $ c2 : num [1:3] -1 -0.449 2 $ c2IC : num [1:3] -1 -0.449 2 $ c2i : num [1:3] -1 -0.449 2 $ cp1IC: num [1:3] -1 0.776 2 $ cp2IC: num [1:3] -1 -0.449 2 $ cp2i : num [1:3] -1 -0.449 2 $ c1c : num [1:4] -1 -0.449 0.776 2 $ c2c : num [1:4] -1 -0.449 0.776 2 $ cp2 : num [1:4] -1 -0.449 0.776 2 $ cp2c : num [1:4] -1 -0.449 0.776 2 $ c1 : num [1:5] -1 -0.449 0.163 0.776 2 $ c1IC : num [1:5] -1 -0.449 0.163 0.776 2 $ c1i : num [1:5] -1 -0.449 0.163 0.776 2 $ cp1 : num [1:5] -1 -0.449 0.163 0.776 2 $ cp1c : num [1:5] -1 -0.449 0.163 0.776 2 $ cp1i : num [1:5] -1 -0.449 0.163 0.776 2 > > gotRsqrs <- sapply(cobsL, Rsq) > Rsqrs <- c(c1 = 0.95079126, c1IC = 0.92974549, c1c = 0.92974549, c1i = 0.95079126, + c2 = 0.94637437, c2IC = 0.91375404, c2c = 0.92505977, c2i = 0.95022829, + cp1 = 0.9426453, cp1IC = 0.92223149, cp1c = 0.92223149, cp1i = 0.9426453, + cp2 = 0.94988863, cp2IC= 0.90051964, cp2c = 0.91375409, cp2i = 0.93611487) > ## M1 mac " = " , cp2IC= 0.91704726, " = " , cp2i = 0.94620178 > ## noLD " = " , cp2IC=-0.08244284, " = " , cp2i = 0.94636815 > ## ATLAS " = " , cp2IC= 0.91471729, " = " , cp2i = 0.94506339 > ## openBLAS " = " , cp2IC= 0.91738019, " = " , cp2i = 0.93589404 > ## MKL " = " , cp2IC= 0.91765403, " = " , cp2i = 0.94501205 > ## Intel " = " , cp2IC= 0.91765403, " = " , cp2i = 0.94501205 > ## ^^^^^^^^^^ ^^^^^^^^^^ > ## remove these two from testing, notably for the M1 Mac & noLD .. : > ##iR2 <- if(!x86 || noLdbl) setdiff(names(cobsL), c("cp2IC", "cp2i")) else TRUE > ## actually everywhere, because of ATLAS, openBLAS, MKL, Intel... : > iR2 <- setdiff(names(cobsL), nR2 <- c("cp2IC", "cp2i")) > ## IGNORE_RDIFF_BEGIN > dput(signif(gotRsqrs, digits=8)) c(c1 = 0.95079126, c1IC = 0.92985539, c1c = 0.94255545, c1i = 0.95079126, c2 = 0.94637437, c2IC = 0.94864721, c2c = 0.91964571, c2i = 0.94864721, cp1 = 0.9426453, cp1IC = 0.92223149, cp1c = 0.92223149, cp1i = 0.9426453, cp2 = 0.95501214, cp2IC = 0.94864721, cp2c = 0.91867996, cp2i = 0.94864721 ) > all.equal(Rsqrs[iR2], gotRsqrs[iR2], tolerance=0)# 2.6277e-9 (Lnx F 38); 2.6898e-9 (M1 mac) [1] "Mean relative difference: 0.00495479" > all.equal(Rsqrs[nR2], gotRsqrs[nR2], tolerance=0)# differ; drastically only for 'noLD' [1] "Mean relative difference: 0.0330278" > ## IGNORE_RDIFF_END > stopifnot(exprs = { + all.equal(Rsqrs[iR2], gotRsqrs[iR2]) + identical(c(5L, 3L, 3L, 5L, + 3L, 2L, 3L, 4L, + 5L, 3L, 3L, 5L, + 4L, 2L, 2L, 4L), unname(lengths(knL))) + }) Error: Rsqrs[iR2] and gotRsqrs[iR2] are not equal: Mean relative difference: 0.00495479 Execution halted Running the tests in ‘tests/wind.R’ failed. Complete output: > suppressMessages(library(cobs)) > > source(system.file("util.R", package = "cobs")) > (doExtra <- doExtras()) [1] FALSE > source(system.file("test-tools-1.R", package="Matrix", mustWork=TRUE)) Loading required package: tools > showProc.time() # timing here (to be faster by default) Time (user system elapsed): 0.001 0 0.001 > > data(DublinWind) > attach(DublinWind)##-> speed & day (instead of "wind.x" & "DUB.") > iday <- sort.list(day) > > if(!dev.interactive(orNone=TRUE)) pdf("wind.pdf", width=10) > > stopifnot(identical(day,c(rep(c(rep(1:365,3),1:366),4), + rep(1:365,2)))) > co50.1 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 1) Warning message: In cobs(day, speed, constraint = "periodic", tau = 0.5, lambda = 2.2, : drqssbc2(): Not all flags are normal (== 1), ifl : 37 > co50.2 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 2) Warning message: In cobs(day, speed, constraint = "periodic", tau = 0.5, lambda = 2.2, : drqssbc2(): Not all flags are normal (== 1), ifl : 38 > > showProc.time() Time (user system elapsed): 0.403 0.032 0.644 > > plot(day,speed, pch = ".", col = "gray20") > lines(day[iday], fitted(co50.1)[iday], col="orange", lwd = 2) > lines(day[iday], fitted(co50.2)[iday], col="sky blue", lwd = 2) > rug(knots(co50.1), col=3, lwd=2) > > nknots <- 13 > > > if(doExtra) { + ## Compute the quadratic median smoothing B-spline using SIC + ## lambda selection + co.o50 <- + cobs(day, speed, knots.add = TRUE, constraint="periodic", nknots = nknots, + tau = .5, lambda = -1, method = "uniform") + summary(co.o50) # [does print] + + showProc.time() + + op <- par(mfrow = c(3,1), mgp = c(1.5, 0.6,0), mar=.1 + c(3,3:1)) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", + col=2, log = "x", main = "co.o50: periodic")) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", ylim = robrng(pp.sic), + col=2, log = "x", main = "co.o50: periodic")) + of <- 0.64430538125795 + with(co.o50, plot(pp.sic - of ~ pp.lambda, type ="o", ylim = c(6e-15, 8e-15), + ylab = paste("sic -",formatC(of, dig=14, small.m = "'")), + col=2, log = "x", main = "co.o50: periodic")) + par(op) + } > > showProc.time() Time (user system elapsed): 0.033 0.001 0.07 > > ## cobs99: Since SIC chooses a lambda that corresponds to the smoothest > ## possible fit, rerun cobs with a larger lstart value > ## (lstart <- log(.Machine$double.xmax)^3) # 3.57 e9 > ## > co.o50. <- + cobs(day,speed, knots.add = TRUE, constraint = "periodic", nknots = 10, + tau = .5, lambda = -1, method = "quantile") Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Error in drqssbc2(x, y, w, pw = pw, knots = knots, degree = degree, Tlambda = if (select.lambda) lambdaSet else lambda, : The problem is degenerate for the range of lambda specified. Calls: cobs -> drqssbc2 In addition: Warning message: In min(sol1["k", i.keep]) : no non-missing arguments to min; returning Inf Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.3-8
Check: tests
Result: ERROR Running ‘0_pt-ex.R’ [4s/12s] Running ‘ex1.R’ [12s/60s] Running ‘ex2-long.R’ [8s/29s] Running ‘ex3.R’ Comparing ‘ex3.Rout’ to ‘ex3.Rout.save’ ... OK Running ‘multi-constr.R’ [7s/22s] Comparing ‘multi-constr.Rout’ to ‘multi-constr.Rout.save’ ... OK Running ‘roof.R’ [5s/20s] Running ‘small-ex.R’ [5s/18s] Comparing ‘small-ex.Rout’ to ‘small-ex.Rout.save’ ... OK Running ‘spline-ex.R’ [4s/21s] Comparing ‘spline-ex.Rout’ to ‘spline-ex.Rout.save’ ... OK Running ‘temp.R’ [5s/25s] Comparing ‘temp.Rout’ to ‘temp.Rout.save’ ...29,31d28 < Warning message: < In cobs(year, temp, knots.add = TRUE, degree = 1, constraint = "increase", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 35,42c32,35 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.5}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.47054145, -0.01648649, -0.01648649, 0.27562279 > R^2 = 70.37% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) 52,54d44 < Warning message: < In cobs(year, temp, nknots = 9, knots.add = TRUE, degree = 1, constraint = "increase", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 58,65c48,51 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.5}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > {tau=0.5}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.47054145, -0.01648649, -0.01648649, 0.27562279 > R^2 = 70.37% ; empirical tau (over all): 56/113 = 0.4955752 (target tau= 0.5) 69,71d54 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 75,82c58,61 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.1}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324885, -0.28115087, 0.05916295, -0.07465159, 0.31227907 < empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.1) --- > {tau=0.1}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.5700016, -0.1700000, -0.1700000, 0.1300024 > empirical tau (over all): 12/113 = 0.1061947 (target tau= 0.1) 85,87d63 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 91,98c67,70 < < **** ERROR in algorithm: ifl = 22 < < < {tau=0.9}-quantile; dimensionality of fit: 5 from {5} < x$knots[1:5]: 1880, 1908, 1936, 1964, 1992 < coef[1:5]: -0.39324885, -0.28115087, 0.05916295, -0.07465159, 0.31227907 < empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.9) --- > {tau=0.9}-quantile; dimensionality of fit: 4 from {4} > x$knots[1:4]: 1880, 1936, 1964, 1992 > coef[1:4]: -0.2576939, 0.1300000, 0.1300000, 0.4961568 > empirical tau (over all): 104/113 = 0.920354 (target tau= 0.9) 101,103c73 < [1] 1 2 9 10 17 18 20 21 22 23 26 27 35 36 42 47 48 49 52 < [20] 53 58 59 61 62 63 64 65 68 73 74 78 79 80 81 82 83 84 88 < [39] 90 91 94 98 100 101 102 104 108 109 111 112 --- > [1] 10 18 21 22 47 61 74 102 111 105,108c75 < [1] 3 4 5 6 7 8 11 12 13 14 15 16 19 24 25 28 29 30 31 < [20] 32 33 34 37 38 39 40 41 43 44 45 46 50 51 54 55 56 57 60 < [39] 66 67 69 70 71 72 75 76 77 85 86 87 89 92 93 95 96 97 99 < [58] 103 105 106 107 110 113 --- > [1] 5 8 25 28 38 39 85 86 92 95 97 113 113,225c80,192 < [1,] 1880 -0.393247953 -0.568567598 -0.217928308 -0.497693198 -0.2888027083 < [2,] 1881 -0.389244486 -0.556686706 -0.221802266 -0.488996819 -0.2894921527 < [3,] 1882 -0.385241019 -0.544932639 -0.225549398 -0.480375996 -0.2901060418 < [4,] 1883 -0.381237552 -0.533324789 -0.229150314 -0.471842280 -0.2906328235 < [5,] 1884 -0.377234084 -0.521886218 -0.232581951 -0.463409410 -0.2910587589 < [6,] 1885 -0.373230617 -0.510644405 -0.235816829 -0.455093758 -0.2913674769 < [7,] 1886 -0.369227150 -0.499632120 -0.238822180 -0.446914845 -0.2915394558 < [8,] 1887 -0.365223683 -0.488888394 -0.241558972 -0.438895923 -0.2915514428 < [9,] 1888 -0.361220216 -0.478459556 -0.243980875 -0.431064594 -0.2913758376 < [10,] 1889 -0.357216749 -0.468400213 -0.246033284 -0.423453388 -0.2909801092 < [11,] 1890 -0.353213282 -0.458773976 -0.247652588 -0.416100202 -0.2903263615 < [12,] 1891 -0.349209814 -0.449653605 -0.248766024 -0.409048381 -0.2893712477 < [13,] 1892 -0.345206347 -0.441120098 -0.249292596 -0.402346180 -0.2880665146 < [14,] 1893 -0.341202880 -0.433260133 -0.249145628 -0.396045236 -0.2863605248 < [15,] 1894 -0.337199413 -0.426161346 -0.248237480 -0.390197757 -0.2842010691 < [16,] 1895 -0.333195946 -0.419905293 -0.246486599 -0.384852330 -0.2815395617 < [17,] 1896 -0.329192479 -0.414558712 -0.243826246 -0.380048714 -0.2783362437 < [18,] 1897 -0.325189012 -0.410164739 -0.240213284 -0.375812606 -0.2745654171 < [19,] 1898 -0.321185545 -0.406736420 -0.235634669 -0.372151779 -0.2702193101 < [20,] 1899 -0.317182077 -0.404254622 -0.230109533 -0.369054834 -0.2653093212 < [21,] 1900 -0.313178610 -0.402671075 -0.223686145 -0.366493014 -0.2598642062 < [22,] 1901 -0.309175143 -0.401915491 -0.216434795 -0.364424447 -0.2539258394 < [23,] 1902 -0.305171676 -0.401904507 -0.208438845 -0.362799469 -0.2475438831 < [24,] 1903 -0.301168209 -0.402550192 -0.199786225 -0.361565696 -0.2407707212 < [25,] 1904 -0.297164742 -0.403766666 -0.190562818 -0.360671966 -0.2336575172 < [26,] 1905 -0.293161275 -0.405474370 -0.180848179 -0.360070883 -0.2262516664 < [27,] 1906 -0.289157807 -0.407602268 -0.170713347 -0.359720126 -0.2185954887 < [28,] 1907 -0.285154340 -0.410088509 -0.160220171 -0.359582850 -0.2107258307 < [29,] 1908 -0.281150873 -0.412880143 -0.149421603 -0.359627508 -0.2026742377 < [30,] 1909 -0.268996808 -0.394836115 -0.143157501 -0.343964546 -0.1940290700 < [31,] 1910 -0.256842743 -0.376961386 -0.136724100 -0.328402442 -0.1852830438 < [32,] 1911 -0.244688678 -0.359281315 -0.130096042 -0.312956304 -0.1764210522 < [33,] 1912 -0.232534613 -0.341825431 -0.123243796 -0.297643724 -0.1674255025 < [34,] 1913 -0.220380548 -0.324627946 -0.116133151 -0.282485083 -0.1582760137 < [35,] 1914 -0.208226483 -0.307728160 -0.108724807 -0.267503793 -0.1489491732 < [36,] 1915 -0.196072418 -0.291170651 -0.100974185 -0.252726413 -0.1394184235 < [37,] 1916 -0.183918353 -0.275005075 -0.092831631 -0.238182523 -0.1296541835 < [38,] 1917 -0.171764288 -0.259285340 -0.084243236 -0.223904239 -0.1196243373 < [39,] 1918 -0.159610223 -0.244067933 -0.075152513 -0.209925213 -0.1092952334 < [40,] 1919 -0.147456158 -0.229409203 -0.065503113 -0.196279015 -0.0986333019 < [41,] 1920 -0.135302093 -0.215361603 -0.055242584 -0.182996891 -0.0876072953 < [42,] 1921 -0.123148028 -0.201969188 -0.044326869 -0.170105089 -0.0761909673 < [43,] 1922 -0.110993963 -0.189263062 -0.032724864 -0.157622139 -0.0643657877 < [44,] 1923 -0.098839898 -0.177257723 -0.020422074 -0.145556676 -0.0521231208 < [45,] 1924 -0.086685833 -0.165949224 -0.007422442 -0.133906350 -0.0394653164 < [46,] 1925 -0.074531768 -0.155315688 0.006252152 -0.122658128 -0.0264054087 < [47,] 1926 -0.062377703 -0.145320002 0.020564595 -0.111789900 -0.0129655072 < [48,] 1927 -0.050223638 -0.135913981 0.035466704 -0.101272959 0.0008256822 < [49,] 1928 -0.038069573 -0.127043003 0.050903856 -0.091074767 0.0149356198 < [50,] 1929 -0.025915508 -0.118650261 0.066819244 -0.081161479 0.0293304619 < [51,] 1930 -0.013761444 -0.110680090 0.083157203 -0.071499934 0.0439770474 < [52,] 1931 -0.001607379 -0.103080234 0.099865477 -0.062059002 0.0588442451 < [53,] 1932 0.010546686 -0.095803129 0.116896502 -0.052810346 0.0739037194 < [54,] 1933 0.022700751 -0.088806436 0.134207939 -0.043728744 0.0891302464 < [55,] 1934 0.034854816 -0.082053049 0.151762682 -0.034792088 0.1045017213 < [56,] 1935 0.047008881 -0.075510798 0.169528561 -0.025981216 0.1199989785 < [57,] 1936 0.059162946 -0.069151984 0.187477877 -0.017279624 0.1356055167 < [58,] 1937 0.054383856 -0.068135824 0.176903535 -0.018606241 0.1273739530 < [59,] 1938 0.049604765 -0.067303100 0.166512631 -0.020042139 0.1192516703 < [60,] 1939 0.044825675 -0.066681512 0.156332862 -0.021603820 0.1112551700 < [61,] 1940 0.040046585 -0.066303231 0.146396400 -0.023310448 0.1034036175 < [62,] 1941 0.035267494 -0.066205361 0.136740349 -0.025184129 0.0957191177 < [63,] 1942 0.030488404 -0.066430243 0.127407050 -0.027250087 0.0882268946 < [64,] 1943 0.025709313 -0.067025439 0.118444066 -0.029536657 0.0809552836 < [65,] 1944 0.020930223 -0.068043207 0.109903653 -0.032074970 0.0739354160 < [66,] 1945 0.016151132 -0.069539210 0.101841475 -0.034898188 0.0672004530 < [67,] 1946 0.011372042 -0.071570257 0.094314341 -0.038040154 0.0607842381 < [68,] 1947 0.006592951 -0.074190969 0.087376871 -0.041533408 0.0547193111 < [69,] 1948 0.001813861 -0.077449530 0.081077252 -0.045406656 0.0490343779 < [70,] 1949 -0.002965230 -0.081383054 0.075452595 -0.049682007 0.0437515481 < [71,] 1950 -0.007744320 -0.086013419 0.070524779 -0.054372496 0.0388838557 < [72,] 1951 -0.012523410 -0.091344570 0.066297749 -0.059480471 0.0344336506 < [73,] 1952 -0.017302501 -0.097362010 0.062757009 -0.064997299 0.0303922971 < [74,] 1953 -0.022081591 -0.104034636 0.059871454 -0.070904448 0.0267412650 < [75,] 1954 -0.026860682 -0.111318392 0.057597028 -0.077175672 0.0234543081 < [76,] 1955 -0.031639772 -0.119160824 0.055881280 -0.083779723 0.0205001786 < [77,] 1956 -0.036418863 -0.127505585 0.054667859 -0.090683032 0.0178453070 < [78,] 1957 -0.041197953 -0.136296186 0.053900280 -0.097851948 0.0154560415 < [79,] 1958 -0.045977044 -0.145478720 0.053524633 -0.105254354 0.0133002664 < [80,] 1959 -0.050756134 -0.155003532 0.053491263 -0.112860669 0.0113484004 < [81,] 1960 -0.055535225 -0.164826042 0.053755593 -0.120644335 0.0095738862 < [82,] 1961 -0.060314315 -0.174906951 0.054278321 -0.128581941 0.0079533109 < [83,] 1962 -0.065093405 -0.185212049 0.055025238 -0.136653105 0.0064662939 < [84,] 1963 -0.069872496 -0.195711803 0.055966811 -0.144840234 0.0050952422 < [85,] 1964 -0.074651586 -0.206380857 0.057077684 -0.153128222 0.0038250490 < [86,] 1965 -0.060832745 -0.185766914 0.064101424 -0.135261254 0.0135957648 < [87,] 1966 -0.047013903 -0.165458364 0.071430557 -0.117576222 0.0235484155 < [88,] 1967 -0.033195062 -0.145508157 0.079118034 -0.100104670 0.0337145466 < [89,] 1968 -0.019376220 -0.125978144 0.087225704 -0.082883444 0.0441310044 < [90,] 1969 -0.005557378 -0.106939362 0.095824605 -0.065954866 0.0548401092 < [91,] 1970 0.008261463 -0.088471368 0.104994294 -0.049366330 0.0658892560 < [92,] 1971 0.022080305 -0.070660043 0.114820653 -0.033168999 0.0773296085 < [93,] 1972 0.035899146 -0.053593318 0.125391611 -0.017415258 0.0892135504 < [94,] 1973 0.049717988 -0.037354556 0.136790532 -0.002154768 0.1015907442 < [95,] 1974 0.063536830 -0.022014046 0.149087705 0.012570595 0.1145030640 < [96,] 1975 0.077355671 -0.007620056 0.162331398 0.026732077 0.1279792657 < [97,] 1976 0.091174513 0.005808280 0.176540746 0.040318278 0.1420307479 < [98,] 1977 0.104993354 0.018284008 0.191702701 0.053336970 0.1566497385 < [99,] 1978 0.118812196 0.029850263 0.207774129 0.065813852 0.1718105399 < [100,] 1979 0.132631038 0.040573785 0.224688290 0.077788682 0.1874733929 < [101,] 1980 0.146449879 0.050536128 0.242363630 0.089310046 0.2035897119 < [102,] 1981 0.160268721 0.059824930 0.260712511 0.100430154 0.2201072876 < [103,] 1982 0.174087562 0.068526868 0.279648256 0.111200642 0.2369744825 < [104,] 1983 0.187906404 0.076722940 0.299089868 0.121669764 0.2541430435 < [105,] 1984 0.201725246 0.084485905 0.318964586 0.131880867 0.2715696238 < [106,] 1985 0.215544087 0.091879376 0.339208798 0.141871847 0.2892163274 < [107,] 1986 0.229362929 0.098957959 0.359767899 0.151675234 0.3070506231 < [108,] 1987 0.243181770 0.105767982 0.380595558 0.161318630 0.3250449108 < [109,] 1988 0.257000612 0.112348478 0.401652745 0.170825286 0.3431759375 < [110,] 1989 0.270819454 0.118732216 0.422906691 0.180214725 0.3614241817 < [111,] 1990 0.284638295 0.124946675 0.444329916 0.189503318 0.3797732721 < [112,] 1991 0.298457137 0.131014917 0.465899357 0.198704804 0.3982094699 < [113,] 1992 0.312275978 0.136956333 0.487595623 0.207830734 0.4167212231 --- > [1,] 1880 -0.470540541 -0.580395233 -0.360685849 -0.541226637 -0.399854444 > [2,] 1881 -0.462432432 -0.569650451 -0.355214414 -0.531421959 -0.393442906 > [3,] 1882 -0.454324324 -0.558928137 -0.349720511 -0.521631738 -0.387016910 > [4,] 1883 -0.446216216 -0.548230020 -0.344202412 -0.511857087 -0.380575346 > [5,] 1884 -0.438108108 -0.537557989 -0.338658227 -0.502099220 -0.374116996 > [6,] 1885 -0.430000000 -0.526914115 -0.333085885 -0.492359472 -0.367640528 > [7,] 1886 -0.421891892 -0.516300667 -0.327483116 -0.482639300 -0.361144484 > [8,] 1887 -0.413783784 -0.505720132 -0.321847435 -0.472940307 -0.354627261 > [9,] 1888 -0.405675676 -0.495175238 -0.316176113 -0.463264247 -0.348087105 > [10,] 1889 -0.397567568 -0.484668976 -0.310466159 -0.453613044 -0.341522091 > [11,] 1890 -0.389459459 -0.474204626 -0.304714293 -0.443988810 -0.334930108 > [12,] 1891 -0.381351351 -0.463785782 -0.298916920 -0.434393857 -0.328308845 > [13,] 1892 -0.373243243 -0.453416379 -0.293070107 -0.424830717 -0.321655770 > [14,] 1893 -0.365135135 -0.443100719 -0.287169552 -0.415302157 -0.314968113 > [15,] 1894 -0.357027027 -0.432843496 -0.281210558 -0.405811200 -0.308242854 > [16,] 1895 -0.348918919 -0.422649821 -0.275188017 -0.396361132 -0.301476706 > [17,] 1896 -0.340810811 -0.412525238 -0.269096384 -0.386955521 -0.294666101 > [18,] 1897 -0.332702703 -0.402475737 -0.262929668 -0.377598222 -0.287807183 > [19,] 1898 -0.324594595 -0.392507759 -0.256681430 -0.368293379 -0.280895810 > [20,] 1899 -0.316486486 -0.382628180 -0.250344793 -0.359045416 -0.273927557 > [21,] 1900 -0.308378378 -0.372844288 -0.243912468 -0.349859024 -0.266897733 > [22,] 1901 -0.300270270 -0.363163733 -0.237376807 -0.340739124 -0.259801417 > [23,] 1902 -0.292162162 -0.353594450 -0.230729874 -0.331690821 -0.252633503 > [24,] 1903 -0.284054054 -0.344144557 -0.223963551 -0.322719340 -0.245388768 > [25,] 1904 -0.275945946 -0.334822217 -0.217069675 -0.313829934 -0.238061958 > [26,] 1905 -0.267837838 -0.325635470 -0.210040206 -0.305027774 -0.230647901 > [27,] 1906 -0.259729730 -0.316592032 -0.202867427 -0.296317828 -0.223141632 > [28,] 1907 -0.251621622 -0.307699075 -0.195544168 -0.287704708 -0.215538535 > [29,] 1908 -0.243513514 -0.298962989 -0.188064038 -0.279192527 -0.207834500 > [30,] 1909 -0.235405405 -0.290389150 -0.180421661 -0.270784743 -0.200026067 > [31,] 1910 -0.227297297 -0.281981702 -0.172612893 -0.262484025 -0.192110570 > [32,] 1911 -0.219189189 -0.273743385 -0.164634993 -0.254292134 -0.184086245 > [33,] 1912 -0.211081081 -0.265675409 -0.156486753 -0.246209849 -0.175952313 > [34,] 1913 -0.202972973 -0.257777400 -0.148168546 -0.238236929 -0.167709017 > [35,] 1914 -0.194864865 -0.250047417 -0.139682313 -0.230372126 -0.159357604 > [36,] 1915 -0.186756757 -0.242482039 -0.131031475 -0.222613238 -0.150900276 > [37,] 1916 -0.178648649 -0.235076516 -0.122220781 -0.214957209 -0.142340088 > [38,] 1917 -0.170540541 -0.227824968 -0.113256113 -0.207400255 -0.133680826 > [39,] 1918 -0.162432432 -0.220720606 -0.104144259 -0.199938008 -0.124926856 > [40,] 1919 -0.154324324 -0.213755974 -0.094892674 -0.192565671 -0.116082978 > [41,] 1920 -0.146216216 -0.206923176 -0.085509256 -0.185278162 -0.107154270 > [42,] 1921 -0.138108108 -0.200214092 -0.076002124 -0.178070257 -0.098145959 > [43,] 1922 -0.130000000 -0.193620560 -0.066379440 -0.170936704 -0.089063296 > [44,] 1923 -0.121891892 -0.187134533 -0.056649251 -0.163872326 -0.079911458 > [45,] 1924 -0.113783784 -0.180748200 -0.046819367 -0.156872096 -0.070695472 > [46,] 1925 -0.105675676 -0.174454074 -0.036897277 -0.149931196 -0.061420156 > [47,] 1926 -0.097567568 -0.168245056 -0.026890080 -0.143045058 -0.052090077 > [48,] 1927 -0.089459459 -0.162114471 -0.016804448 -0.136209390 -0.042709529 > [49,] 1928 -0.081351351 -0.156056093 -0.006646610 -0.129420182 -0.033282521 > [50,] 1929 -0.073243243 -0.150064140 0.003577654 -0.122673716 -0.023812771 > [51,] 1930 -0.065135135 -0.144133276 0.013863006 -0.115966557 -0.014303713 > [52,] 1931 -0.057027027 -0.138258588 0.024204534 -0.109295545 -0.004758509 > [53,] 1932 -0.048918919 -0.132435569 0.034597732 -0.102657780 0.004819942 > [54,] 1933 -0.040810811 -0.126660095 0.045038473 -0.096050607 0.014428985 > [55,] 1934 -0.032702703 -0.120928393 0.055522988 -0.089471600 0.024066194 > [56,] 1935 -0.024594595 -0.115237021 0.066047832 -0.082918542 0.033729353 > [57,] 1936 -0.016486486 -0.109582838 0.076609865 -0.076389415 0.043416442 > [58,] 1937 -0.016486486 -0.105401253 0.072428280 -0.073698770 0.040725797 > [59,] 1938 -0.016486486 -0.101403226 0.068430253 -0.071126236 0.038153263 > [60,] 1939 -0.016486486 -0.097615899 0.064642926 -0.068689277 0.035716305 > [61,] 1940 -0.016486486 -0.094070136 0.061097163 -0.066407753 0.033434780 > [62,] 1941 -0.016486486 -0.090800520 0.057827547 -0.064303916 0.031330943 > [63,] 1942 -0.016486486 -0.087845022 0.054872049 -0.062402198 0.029429225 > [64,] 1943 -0.016486486 -0.085244160 0.052271187 -0.060728671 0.027755698 > [65,] 1944 -0.016486486 -0.083039523 0.050066550 -0.059310095 0.026337122 > [66,] 1945 -0.016486486 -0.081271575 0.048298602 -0.058172508 0.025199535 > [67,] 1946 -0.016486486 -0.079976806 0.047003833 -0.057339388 0.024366415 > [68,] 1947 -0.016486486 -0.079184539 0.046211566 -0.056829602 0.023856629 > [69,] 1948 -0.016486486 -0.078913907 0.045940934 -0.056655464 0.023682491 > [70,] 1949 -0.016486486 -0.079171667 0.046198694 -0.056821320 0.023848347 > [71,] 1950 -0.016486486 -0.079951382 0.046978409 -0.057323028 0.024350055 > [72,] 1951 -0.016486486 -0.081234197 0.048261224 -0.058148457 0.025175484 > [73,] 1952 -0.016486486 -0.082991006 0.050018033 -0.059278877 0.026305904 > [74,] 1953 -0.016486486 -0.085185454 0.052212481 -0.060690897 0.027717924 > [75,] 1954 -0.016486486 -0.087777140 0.054804167 -0.062358519 0.029385546 > [76,] 1955 -0.016486486 -0.090724471 0.057751498 -0.064254982 0.031282009 > [77,] 1956 -0.016486486 -0.093986883 0.061013910 -0.066354184 0.033381211 > [78,] 1957 -0.016486486 -0.097526332 0.064553359 -0.068631645 0.035658672 > [79,] 1958 -0.016486486 -0.101308145 0.068335172 -0.071065056 0.038092083 > [80,] 1959 -0.016486486 -0.105301366 0.072328393 -0.073634498 0.040661525 > [81,] 1960 -0.016486486 -0.109478765 0.076505793 -0.076322449 0.043349476 > [82,] 1961 -0.016486486 -0.113816631 0.080843658 -0.079113653 0.046140680 > [83,] 1962 -0.016486486 -0.118294454 0.085321481 -0.081994911 0.049021938 > [84,] 1963 -0.016486486 -0.122894566 0.089921593 -0.084954858 0.051981885 > [85,] 1964 -0.016486486 -0.127601781 0.094628808 -0.087983719 0.055010746 > [86,] 1965 -0.006054054 -0.111440065 0.099331957 -0.073864774 0.061756666 > [87,] 1966 0.004378378 -0.095541433 0.104298190 -0.059915111 0.068671868 > [88,] 1967 0.014810811 -0.079951422 0.109573043 -0.046164030 0.075785651 > [89,] 1968 0.025243243 -0.064723125 0.115209611 -0.032645694 0.083132181 > [90,] 1969 0.035675676 -0.049917365 0.121268716 -0.019399240 0.090750592 > [91,] 1970 0.046108108 -0.035602017 0.127818233 -0.006468342 0.098684559 > [92,] 1971 0.056540541 -0.021849988 0.134931069 0.006100087 0.106980994 > [93,] 1972 0.066972973 -0.008735416 0.142681362 0.018258345 0.115687601 > [94,] 1973 0.077405405 0.003672103 0.151138707 0.029961648 0.124849163 > [95,] 1974 0.087837838 0.015314778 0.160360898 0.041172812 0.134502863 > [96,] 1975 0.098270270 0.026154092 0.170386449 0.051867053 0.144673488 > [97,] 1976 0.108702703 0.036176523 0.181228883 0.062035669 0.155369736 > [98,] 1977 0.119135135 0.045395695 0.192874575 0.071687429 0.166582842 > [99,] 1978 0.129567568 0.053850212 0.205284923 0.080847170 0.178287965 > [100,] 1979 0.140000000 0.061597925 0.218402075 0.089552117 0.190447883 > [101,] 1980 0.150432432 0.068708461 0.232156404 0.097847072 0.203017792 > [102,] 1981 0.160864865 0.075255962 0.246473767 0.105779742 0.215949987 > [103,] 1982 0.171297297 0.081313324 0.261281271 0.113397031 0.229197563 > [104,] 1983 0.181729730 0.086948395 0.276511065 0.120742598 0.242716862 > [105,] 1984 0.192162162 0.092221970 0.292102355 0.127855559 0.256468766 > [106,] 1985 0.202594595 0.097187112 0.308002077 0.134770059 0.270419130 > [107,] 1986 0.213027027 0.101889333 0.324164721 0.141515381 0.284538673 > [108,] 1987 0.223459459 0.106367224 0.340551695 0.148116359 0.298802560 > [109,] 1988 0.233891892 0.110653299 0.357130484 0.154593913 0.313189871 > [110,] 1989 0.244324324 0.114774857 0.373873791 0.160965608 0.327683041 > [111,] 1990 0.254756757 0.118754798 0.390758715 0.167246179 0.342267335 > [112,] 1991 0.265189189 0.122612348 0.407766030 0.173447997 0.356930381 > [113,] 1992 0.275621622 0.126363680 0.424879564 0.179581470 0.371661774 228,340c195,307 < [1,] 1880 -0.393247953 -0.638616081 -0.147879825 -0.539424009 -0.247071897 < [2,] 1881 -0.389244486 -0.623587786 -0.154901186 -0.528852590 -0.249636382 < [3,] 1882 -0.385241019 -0.608736988 -0.161745049 -0.518386915 -0.252095123 < [4,] 1883 -0.381237552 -0.594090828 -0.168384275 -0.508043150 -0.254431953 < [5,] 1884 -0.377234084 -0.579681581 -0.174786588 -0.497840525 -0.256627644 < [6,] 1885 -0.373230617 -0.565547708 -0.180913527 -0.487801951 -0.258659284 < [7,] 1886 -0.369227150 -0.551735068 -0.186719232 -0.477954750 -0.260499551 < [8,] 1887 -0.365223683 -0.538298290 -0.192149076 -0.468331465 -0.262115901 < [9,] 1888 -0.361220216 -0.525302213 -0.197138218 -0.458970724 -0.263469708 < [10,] 1889 -0.357216749 -0.512823261 -0.201610236 -0.449918056 -0.264515441 < [11,] 1890 -0.353213282 -0.500950461 -0.205476102 -0.441226498 -0.265200065 < [12,] 1891 -0.349209814 -0.489785646 -0.208633983 -0.432956717 -0.265462912 < [13,] 1892 -0.345206347 -0.479442174 -0.210970520 -0.425176244 -0.265236451 < [14,] 1893 -0.341202880 -0.470041356 -0.212364405 -0.417957348 -0.264448412 < [15,] 1894 -0.337199413 -0.461705842 -0.212692984 -0.411373100 -0.263025726 < [16,] 1895 -0.333195946 -0.454549774 -0.211842118 -0.405491497 -0.260900395 < [17,] 1896 -0.329192479 -0.448666556 -0.209718402 -0.400368183 -0.258016774 < [18,] 1897 -0.325189012 -0.444116558 -0.206261466 -0.396039125 -0.254338899 < [19,] 1898 -0.321185545 -0.440918038 -0.201453051 -0.392515198 -0.249855891 < [20,] 1899 -0.317182077 -0.439044218 -0.195319937 -0.389780451 -0.244583704 < [21,] 1900 -0.313178610 -0.438427544 -0.187929677 -0.387794638 -0.238562582 < [22,] 1901 -0.309175143 -0.438969642 -0.179380644 -0.386499155 -0.231851132 < [23,] 1902 -0.305171676 -0.440553844 -0.169789508 -0.385824495 -0.224518857 < [24,] 1903 -0.301168209 -0.443057086 -0.159279332 -0.385697347 -0.216639071 < [25,] 1904 -0.297164742 -0.446359172 -0.147970311 -0.386046103 -0.208283380 < [26,] 1905 -0.293161275 -0.450348759 -0.135973790 -0.386804433 -0.199518116 < [27,] 1906 -0.289157807 -0.454926427 -0.123389188 -0.387913107 -0.190402508 < [28,] 1907 -0.285154340 -0.460005614 -0.110303066 -0.389320557 -0.180988124 < [29,] 1908 -0.281150873 -0.465512212 -0.096789534 -0.390982633 -0.171319113 < [30,] 1909 -0.268996808 -0.445114865 -0.092878751 -0.373917700 -0.164075916 < [31,] 1910 -0.256842743 -0.424954461 -0.088731025 -0.356993924 -0.156691562 < [32,] 1911 -0.244688678 -0.405066488 -0.084310868 -0.340232447 -0.149144910 < [33,] 1912 -0.232534613 -0.385492277 -0.079576949 -0.323657890 -0.141411336 < [34,] 1913 -0.220380548 -0.366279707 -0.074481389 -0.307298779 -0.133462317 < [35,] 1914 -0.208226483 -0.347483782 -0.068969185 -0.291187880 -0.125265087 < [36,] 1915 -0.196072418 -0.329166890 -0.062977947 -0.275362361 -0.116782475 < [37,] 1916 -0.183918353 -0.311398525 -0.056438181 -0.259863623 -0.107973083 < [38,] 1917 -0.171764288 -0.294254136 -0.049274440 -0.244736614 -0.098791963 < [39,] 1918 -0.159610223 -0.277812779 -0.041407667 -0.230028429 -0.089192017 < [40,] 1919 -0.147456158 -0.262153318 -0.032758999 -0.215786053 -0.079126264 < [41,] 1920 -0.135302093 -0.247349160 -0.023255026 -0.202053217 -0.068550970 < [42,] 1921 -0.123148028 -0.233461966 -0.012834091 -0.188866654 -0.057429402 < [43,] 1922 -0.110993963 -0.220535266 -0.001452661 -0.176252299 -0.045735628 < [44,] 1923 -0.098839898 -0.208589350 0.010909553 -0.164222236 -0.033457560 < [45,] 1924 -0.086685833 -0.197618695 0.024247028 -0.152773178 -0.020598488 < [46,] 1925 -0.074531768 -0.187592682 0.038529145 -0.141886883 -0.007176654 < [47,] 1926 -0.062377703 -0.178459370 0.053703964 -0.131532407 0.006777000 < [48,] 1927 -0.050223638 -0.170151322 0.069704045 -0.121669575 0.021222298 < [49,] 1928 -0.038069573 -0.162592093 0.086452946 -0.112252846 0.036113699 < [50,] 1929 -0.025915508 -0.155702177 0.103871160 -0.103234855 0.051403838 < [51,] 1930 -0.013761444 -0.149403669 0.121880782 -0.094569190 0.067046303 < [52,] 1931 -0.001607379 -0.143623435 0.140408678 -0.086212283 0.082997525 < [53,] 1932 0.010546686 -0.138294906 0.159388279 -0.078124475 0.099217848 < [54,] 1933 0.022700751 -0.133358827 0.178760330 -0.070270466 0.115671969 < [55,] 1934 0.034854816 -0.128763266 0.198472899 -0.062619318 0.132328951 < [56,] 1935 0.047008881 -0.124463200 0.218480963 -0.055144209 0.149161972 < [57,] 1936 0.059162946 -0.120419862 0.238745755 -0.047822043 0.166147936 < [58,] 1937 0.054383856 -0.117088225 0.225855937 -0.047769234 0.156536946 < [59,] 1938 0.049604765 -0.114013317 0.213222848 -0.047869369 0.147078900 < [60,] 1939 0.044825675 -0.111233903 0.200885253 -0.048145542 0.137796893 < [61,] 1940 0.040046585 -0.108795008 0.188888177 -0.048624577 0.128717746 < [62,] 1941 0.035267494 -0.106748562 0.177283550 -0.049337410 0.119872398 < [63,] 1942 0.030488404 -0.105153822 0.166130629 -0.050319343 0.111296150 < [64,] 1943 0.025709313 -0.104077355 0.155495982 -0.051610033 0.103028659 < [65,] 1944 0.020930223 -0.103592297 0.145452743 -0.053253050 0.095113496 < [66,] 1945 0.016151132 -0.103776551 0.136078816 -0.055294804 0.087597069 < [67,] 1946 0.011372042 -0.104709625 0.127453709 -0.057782662 0.080526746 < [68,] 1947 0.006592951 -0.106467962 0.119653865 -0.060762163 0.073948066 < [69,] 1948 0.001813861 -0.109119001 0.112746722 -0.064273484 0.067901206 < [70,] 1949 -0.002965230 -0.112714681 0.106784222 -0.068347568 0.062417108 < [71,] 1950 -0.007744320 -0.117285623 0.101796983 -0.073002655 0.057514015 < [72,] 1951 -0.012523410 -0.122837348 0.097790527 -0.078242036 0.053195215 < [73,] 1952 -0.017302501 -0.129349568 0.094744566 -0.084053625 0.049448623 < [74,] 1953 -0.022081591 -0.136778751 0.092615568 -0.090411486 0.046248303 < [75,] 1954 -0.026860682 -0.145063238 0.091341874 -0.097278888 0.043557524 < [76,] 1955 -0.031639772 -0.154129620 0.090850076 -0.104612098 0.041332553 < [77,] 1956 -0.036418863 -0.163899035 0.091061309 -0.112364133 0.039526407 < [78,] 1957 -0.041197953 -0.174292425 0.091896518 -0.120487896 0.038091990 < [79,] 1958 -0.045977044 -0.185234342 0.093280255 -0.128938440 0.036984353 < [80,] 1959 -0.050756134 -0.196655293 0.095143025 -0.137674365 0.036162097 < [81,] 1960 -0.055535225 -0.208492888 0.097422439 -0.146658502 0.035588053 < [82,] 1961 -0.060314315 -0.220692125 0.100063495 -0.155858084 0.035229454 < [83,] 1962 -0.065093405 -0.233205123 0.103018312 -0.165244586 0.035057775 < [84,] 1963 -0.069872496 -0.245990553 0.106245561 -0.174793388 0.035048396 < [85,] 1964 -0.074651586 -0.259012925 0.109709752 -0.184483346 0.035180173 < [86,] 1965 -0.060832745 -0.235684019 0.114018529 -0.164998961 0.043333472 < [87,] 1966 -0.047013903 -0.212782523 0.118754717 -0.145769203 0.051741396 < [88,] 1967 -0.033195062 -0.190382546 0.123992423 -0.126838220 0.060448097 < [89,] 1968 -0.019376220 -0.168570650 0.129818210 -0.108257582 0.069505142 < [90,] 1969 -0.005557378 -0.147446255 0.136331499 -0.090086516 0.078971760 < [91,] 1970 0.008261463 -0.127120705 0.143643631 -0.072391356 0.088914283 < [92,] 1971 0.022080305 -0.107714195 0.151874804 -0.055243707 0.099404316 < [93,] 1972 0.035899146 -0.089349787 0.161148080 -0.038716881 0.110515174 < [94,] 1973 0.049717988 -0.072144153 0.171580129 -0.022880386 0.122316362 < [95,] 1974 0.063536830 -0.056195664 0.183269323 -0.007792824 0.134866483 < [96,] 1975 0.077355671 -0.041571875 0.196283217 0.006505558 0.148205784 < [97,] 1976 0.091174513 -0.028299564 0.210648590 0.019998808 0.162350217 < [98,] 1977 0.104993354 -0.016360474 0.226347183 0.032697804 0.177288905 < [99,] 1978 0.118812196 -0.005694233 0.243318625 0.044638509 0.192985883 < [100,] 1979 0.132631038 0.003792562 0.261469513 0.055876570 0.209385506 < [101,] 1980 0.146449879 0.012214052 0.280685706 0.066479983 0.226419775 < [102,] 1981 0.160268721 0.019692889 0.300844552 0.076521819 0.244015623 < [103,] 1982 0.174087562 0.026350383 0.321824742 0.086074346 0.262100779 < [104,] 1983 0.187906404 0.032299891 0.343512917 0.095205097 0.280607711 < [105,] 1984 0.201725246 0.037643248 0.365807243 0.103974737 0.299475754 < [106,] 1985 0.215544087 0.042469480 0.388618694 0.112436305 0.318651869 < [107,] 1986 0.229362929 0.046855011 0.411870847 0.120635329 0.338090528 < [108,] 1987 0.243181770 0.050864680 0.435498861 0.128610437 0.357753104 < [109,] 1988 0.257000612 0.054553115 0.459448109 0.136394171 0.377607052 < [110,] 1989 0.270819454 0.057966177 0.483672730 0.144013855 0.397625052 < [111,] 1990 0.284638295 0.061142326 0.508134265 0.151492399 0.417784191 < [112,] 1991 0.298457137 0.064113837 0.532800436 0.158849032 0.438065241 < [113,] 1992 0.312275978 0.066907850 0.557644107 0.166099922 0.458452034 --- > [1,] 1880 -0.570000000 -0.7989007 -0.3410992837 -0.71728636 -0.422713636 > [2,] 1881 -0.562857143 -0.7862639 -0.3394503795 -0.70660842 -0.419105867 > [3,] 1882 -0.555714286 -0.7736739 -0.3377546582 -0.69596060 -0.415467975 > [4,] 1883 -0.548571429 -0.7611343 -0.3360085204 -0.68534522 -0.411797641 > [5,] 1884 -0.541428571 -0.7486491 -0.3342080272 -0.67476481 -0.408092333 > [6,] 1885 -0.534285714 -0.7362226 -0.3323488643 -0.66422216 -0.404349273 > [7,] 1886 -0.527142857 -0.7238594 -0.3304263043 -0.65372029 -0.400565421 > [8,] 1887 -0.520000000 -0.7115648 -0.3284351643 -0.64326256 -0.396737440 > [9,] 1888 -0.512857143 -0.6993445 -0.3263697605 -0.63285261 -0.392861675 > [10,] 1889 -0.505714286 -0.6872047 -0.3242238599 -0.62249446 -0.388934114 > [11,] 1890 -0.498571429 -0.6751522 -0.3219906288 -0.61219250 -0.384950360 > [12,] 1891 -0.491428571 -0.6631946 -0.3196625782 -0.60195155 -0.380905594 > [13,] 1892 -0.484285714 -0.6513399 -0.3172315093 -0.59177689 -0.376794541 > [14,] 1893 -0.477142857 -0.6395973 -0.3146884583 -0.58167428 -0.372611433 > [15,] 1894 -0.470000000 -0.6279764 -0.3120236430 -0.57165002 -0.368349976 > [16,] 1895 -0.462857143 -0.6164879 -0.3092264155 -0.56171097 -0.364003318 > [17,] 1896 -0.455714286 -0.6051433 -0.3062852230 -0.55186455 -0.359564026 > [18,] 1897 -0.448571429 -0.5939553 -0.3031875831 -0.54211879 -0.355024067 > [19,] 1898 -0.441428571 -0.5829371 -0.2999200783 -0.53248233 -0.350374809 > [20,] 1899 -0.434285714 -0.5721031 -0.2964683783 -0.52296440 -0.345607030 > [21,] 1900 -0.427142857 -0.5614684 -0.2928172976 -0.51357475 -0.340710959 > [22,] 1901 -0.420000000 -0.5510491 -0.2889508980 -0.50432366 -0.335676342 > [23,] 1902 -0.412857143 -0.5408616 -0.2848526441 -0.49522175 -0.330492537 > [24,] 1903 -0.405714286 -0.5309229 -0.2805056214 -0.48627991 -0.325148662 > [25,] 1904 -0.398571429 -0.5212500 -0.2758928205 -0.47750909 -0.319633772 > [26,] 1905 -0.391428571 -0.5118597 -0.2709974894 -0.46892006 -0.313937087 > [27,] 1906 -0.384285714 -0.5027679 -0.2658035488 -0.46052317 -0.308048262 > [28,] 1907 -0.377142857 -0.4939897 -0.2602960562 -0.45232803 -0.301957682 > [29,] 1908 -0.370000000 -0.4855383 -0.2544616963 -0.44434322 -0.295656778 > [30,] 1909 -0.362857143 -0.4774250 -0.2482892691 -0.43657594 -0.289138345 > [31,] 1910 -0.355714286 -0.4696584 -0.2417701364 -0.42903175 -0.282396824 > [32,] 1911 -0.348571429 -0.4622443 -0.2348985912 -0.42171431 -0.275428543 > [33,] 1912 -0.341428571 -0.4551850 -0.2276721117 -0.41462526 -0.268231879 > [34,] 1913 -0.334285714 -0.4484800 -0.2200914777 -0.40776409 -0.260807334 > [35,] 1914 -0.327142857 -0.4421250 -0.2121607344 -0.40112820 -0.253157511 > [36,] 1915 -0.320000000 -0.4361130 -0.2038870084 -0.39471301 -0.245286995 > [37,] 1916 -0.312857143 -0.4304341 -0.1952801960 -0.38851213 -0.237202155 > [38,] 1917 -0.305714286 -0.4250760 -0.1863525523 -0.38251770 -0.228910875 > [39,] 1918 -0.298571429 -0.4200246 -0.1771182205 -0.37672060 -0.220422257 > [40,] 1919 -0.291428571 -0.4152644 -0.1675927388 -0.37111085 -0.211746298 > [41,] 1920 -0.284285714 -0.4107789 -0.1577925583 -0.36567785 -0.202893584 > [42,] 1921 -0.277142857 -0.4065511 -0.1477346004 -0.36041071 -0.193875002 > [43,] 1922 -0.270000000 -0.4025641 -0.1374358695 -0.35529850 -0.184701495 > [44,] 1923 -0.262857143 -0.3988012 -0.1269131329 -0.35033043 -0.175383852 > [45,] 1924 -0.255714286 -0.3952459 -0.1161826679 -0.34549603 -0.165932545 > [46,] 1925 -0.248571429 -0.3918828 -0.1052600744 -0.34078524 -0.156357614 > [47,] 1926 -0.241428571 -0.3886970 -0.0941601449 -0.33618857 -0.146668575 > [48,] 1927 -0.234285714 -0.3856746 -0.0828967845 -0.33169705 -0.136874376 > [49,] 1928 -0.227142857 -0.3828027 -0.0714829715 -0.32730235 -0.126983369 > [50,] 1929 -0.220000000 -0.3800693 -0.0599307484 -0.32299670 -0.117003301 > [51,] 1930 -0.212857143 -0.3774630 -0.0482512378 -0.31877296 -0.106941331 > [52,] 1931 -0.205714286 -0.3749739 -0.0364546744 -0.31462453 -0.096804042 > [53,] 1932 -0.198571429 -0.3725924 -0.0245504487 -0.31054538 -0.086597478 > [54,] 1933 -0.191428571 -0.3703100 -0.0125471577 -0.30652997 -0.076327171 > [55,] 1934 -0.184285714 -0.3681188 -0.0004526588 -0.30257325 -0.065998175 > [56,] 1935 -0.177142857 -0.3660116 0.0117258745 -0.29867061 -0.055615108 > [57,] 1936 -0.170000000 -0.3639819 0.0239818977 -0.29481782 -0.045182180 > [58,] 1937 -0.170000000 -0.3552689 0.0152688616 -0.28921141 -0.050788591 > [59,] 1938 -0.170000000 -0.3469383 0.0069383006 -0.28385110 -0.056148897 > [60,] 1939 -0.170000000 -0.3390468 -0.0009532311 -0.27877329 -0.061226710 > [61,] 1940 -0.170000000 -0.3316586 -0.0083414258 -0.27401935 -0.065980650 > [62,] 1941 -0.170000000 -0.3248458 -0.0151542191 -0.26963565 -0.070364348 > [63,] 1942 -0.170000000 -0.3186875 -0.0213124962 -0.26567310 -0.074326897 > [64,] 1943 -0.170000000 -0.3132682 -0.0267318303 -0.26218603 -0.077813972 > [65,] 1944 -0.170000000 -0.3086744 -0.0313255619 -0.25923019 -0.080769813 > [66,] 1945 -0.170000000 -0.3049906 -0.0350093787 -0.25685983 -0.083140168 > [67,] 1946 -0.170000000 -0.3022928 -0.0377072467 -0.25512389 -0.084876113 > [68,] 1947 -0.170000000 -0.3006419 -0.0393580695 -0.25406166 -0.085938337 > [69,] 1948 -0.170000000 -0.3000780 -0.0399219767 -0.25369882 -0.086301183 > [70,] 1949 -0.170000000 -0.3006151 -0.0393848898 -0.25404441 -0.085955594 > [71,] 1950 -0.170000000 -0.3022398 -0.0377602233 -0.25508980 -0.084910201 > [72,] 1951 -0.170000000 -0.3049127 -0.0350872623 -0.25680972 -0.083190282 > [73,] 1952 -0.170000000 -0.3085733 -0.0314266558 -0.25916514 -0.080834862 > [74,] 1953 -0.170000000 -0.3131458 -0.0268541535 -0.26210732 -0.077892681 > [75,] 1954 -0.170000000 -0.3185461 -0.0214539408 -0.26558209 -0.074417909 > [76,] 1955 -0.170000000 -0.3246873 -0.0153126807 -0.26953369 -0.070466310 > [77,] 1956 -0.170000000 -0.3314851 -0.0085148970 -0.27390773 -0.066092271 > [78,] 1957 -0.170000000 -0.3388601 -0.0011398598 -0.27865320 -0.061346797 > [79,] 1958 -0.170000000 -0.3467402 0.0067401824 -0.28372362 -0.056276377 > [80,] 1959 -0.170000000 -0.3550607 0.0150607304 -0.28907749 -0.050922513 > [81,] 1960 -0.170000000 -0.3637650 0.0237650445 -0.29467829 -0.045321714 > [82,] 1961 -0.170000000 -0.3728037 0.0328037172 -0.30049423 -0.039505772 > [83,] 1962 -0.170000000 -0.3821340 0.0421340134 -0.30649781 -0.033502185 > [84,] 1963 -0.170000000 -0.3917191 0.0517191202 -0.31266536 -0.027334640 > [85,] 1964 -0.170000000 -0.4015274 0.0615273928 -0.31897650 -0.021023499 > [86,] 1965 -0.159285714 -0.3788752 0.0603037544 -0.30058075 -0.017990680 > [87,] 1966 -0.148571429 -0.3567712 0.0596282943 -0.28253772 -0.014605137 > [88,] 1967 -0.137857143 -0.3353102 0.0595958975 -0.26490847 -0.010805813 > [89,] 1968 -0.127142857 -0.3146029 0.0603171930 -0.24776419 -0.006521525 > [90,] 1969 -0.116428571 -0.2947761 0.0619189162 -0.23118642 -0.001670726 > [91,] 1970 -0.105714286 -0.2759711 0.0645424939 -0.21526616 0.003837587 > [92,] 1971 -0.095000000 -0.2583398 0.0683398431 -0.20010116 0.010101164 > [93,] 1972 -0.084285714 -0.2420369 0.0734654391 -0.18579083 0.017219402 > [94,] 1973 -0.073571429 -0.2272072 0.0800643002 -0.17242847 0.025285614 > [95,] 1974 -0.062857143 -0.2139711 0.0882568427 -0.16009157 0.034377282 > [96,] 1975 -0.052142857 -0.2024090 0.0981233226 -0.14883176 0.044546046 > [97,] 1976 -0.041428571 -0.1925491 0.1096919157 -0.13866718 0.055810037 > [98,] 1977 -0.030714286 -0.1843628 0.1229342326 -0.12957956 0.068150987 > [99,] 1978 -0.020000000 -0.1777698 0.1377698370 -0.12151714 0.081517138 > [100,] 1979 -0.009285714 -0.1726496 0.1540781875 -0.11440236 0.095830930 > [101,] 1980 0.001428571 -0.1688571 0.1717142023 -0.10814187 0.110999008 > [102,] 1981 0.012142857 -0.1662377 0.1905233955 -0.10263625 0.126921969 > [103,] 1982 0.022857143 -0.1646396 0.2103538775 -0.09778779 0.143502079 > [104,] 1983 0.033571429 -0.1639214 0.2310642722 -0.09350551 0.160648370 > [105,] 1984 0.044285714 -0.1639565 0.2525279044 -0.08970790 0.178279332 > [106,] 1985 0.055000000 -0.1646342 0.2746342071 -0.08632382 0.196323821 > [107,] 1986 0.065714286 -0.1658598 0.2972883534 -0.08329225 0.214720820 > [108,] 1987 0.076428571 -0.1675528 0.3204099260 -0.08056144 0.233418585 > [109,] 1988 0.087142857 -0.1696455 0.3439311798 -0.07808781 0.252373526 > [110,] 1989 0.097857143 -0.1720809 0.3677952332 -0.07583476 0.271549041 > [111,] 1990 0.108571429 -0.1748115 0.3919543697 -0.07377157 0.290914428 > [112,] 1991 0.119285714 -0.1777971 0.4163685288 -0.07187248 0.310443909 > [113,] 1992 0.130000000 -0.1810040 0.4410040109 -0.07011580 0.330115800 343,455c310,422 < [1,] 1880 -0.393247953 -0.693805062 -0.092690844 -0.572302393 -0.214193513 < [2,] 1881 -0.389244486 -0.676297026 -0.102191945 -0.560253689 -0.218235282 < [3,] 1882 -0.385241019 -0.659006413 -0.111475624 -0.548334514 -0.222147524 < [4,] 1883 -0.381237552 -0.641966465 -0.120508639 -0.536564669 -0.225910434 < [5,] 1884 -0.377234084 -0.625216717 -0.129251452 -0.524967709 -0.229500459 < [6,] 1885 -0.373230617 -0.608804280 -0.137656955 -0.513571700 -0.232889535 < [7,] 1886 -0.369227150 -0.592785330 -0.145668970 -0.502410107 -0.236044193 < [8,] 1887 -0.365223683 -0.577226782 -0.153220584 -0.491522795 -0.238924571 < [9,] 1888 -0.361220216 -0.562208058 -0.160232373 -0.480957079 -0.241483352 < [10,] 1889 -0.357216749 -0.547822773 -0.166610724 -0.470768729 -0.243664768 < [11,] 1890 -0.353213282 -0.534179978 -0.172246585 -0.461022711 -0.245403852 < [12,] 1891 -0.349209814 -0.521404410 -0.177015219 -0.451793336 -0.246626293 < [13,] 1892 -0.345206347 -0.509634924 -0.180777771 -0.443163327 -0.247249368 < [14,] 1893 -0.341202880 -0.499020116 -0.183385645 -0.435221208 -0.247184553 < [15,] 1894 -0.337199413 -0.489710224 -0.184688602 -0.428056482 -0.246342344 < [16,] 1895 -0.333195946 -0.481845064 -0.184546828 -0.421752442 -0.244639450 < [17,] 1896 -0.329192479 -0.475539046 -0.182845912 -0.416377249 -0.242007708 < [18,] 1897 -0.325189012 -0.470866120 -0.179511904 -0.411974957 -0.238403066 < [19,] 1898 -0.321185545 -0.467848651 -0.174522438 -0.408558891 -0.233812198 < [20,] 1899 -0.317182077 -0.466453839 -0.167910316 -0.406109508 -0.228254646 < [21,] 1900 -0.313178610 -0.466598933 -0.159758288 -0.404577513 -0.221779708 < [22,] 1901 -0.309175143 -0.468163434 -0.150186852 -0.403891117 -0.214459169 < [23,] 1902 -0.305171676 -0.471004432 -0.139338920 -0.403965184 -0.206378168 < [24,] 1903 -0.301168209 -0.474971184 -0.127365234 -0.404709910 -0.197626508 < [25,] 1904 -0.297164742 -0.479916458 -0.114413025 -0.406037582 -0.188291901 < [26,] 1905 -0.293161275 -0.485703869 -0.100618680 -0.407866950 -0.178455599 < [27,] 1906 -0.289157807 -0.492211633 -0.086103982 -0.410125463 -0.168190151 < [28,] 1907 -0.285154340 -0.499333719 -0.070974961 -0.412749954 -0.157558727 < [29,] 1908 -0.281150873 -0.506979351 -0.055322395 -0.415686342 -0.146615404 < [30,] 1909 -0.268996808 -0.484727899 -0.053265717 -0.397516841 -0.140476775 < [31,] 1910 -0.256842743 -0.462766683 -0.050918803 -0.379520246 -0.134165240 < [32,] 1911 -0.244688678 -0.441139176 -0.048238181 -0.361722455 -0.127654901 < [33,] 1912 -0.232534613 -0.419896002 -0.045173225 -0.344153628 -0.120915598 < [34,] 1913 -0.220380548 -0.399095811 -0.041665286 -0.326848704 -0.113912392 < [35,] 1914 -0.208226483 -0.378805976 -0.037646990 -0.309847821 -0.106605145 < [36,] 1915 -0.196072418 -0.359102922 -0.033041915 -0.293196507 -0.098948329 < [37,] 1916 -0.183918353 -0.340071771 -0.027764935 -0.276945475 -0.090891232 < [38,] 1917 -0.171764288 -0.321804943 -0.021723634 -0.261149781 -0.082378795 < [39,] 1918 -0.159610223 -0.304399275 -0.014821172 -0.245867116 -0.073353330 < [40,] 1919 -0.147456158 -0.287951368 -0.006960949 -0.231155030 -0.063757286 < [41,] 1920 -0.135302093 -0.272551143 0.001946957 -0.217067092 -0.053537094 < [42,] 1921 -0.123148028 -0.258274127 0.011978071 -0.203648297 -0.042647760 < [43,] 1922 -0.110993963 -0.245173645 0.023185718 -0.190930411 -0.031057516 < [44,] 1923 -0.098839898 -0.233274545 0.035594749 -0.178928240 -0.018751557 < [45,] 1924 -0.086685833 -0.222570067 0.049198400 -0.167637754 -0.005733912 < [46,] 1925 -0.074531768 -0.213022703 0.063959166 -0.157036610 0.007973073 < [47,] 1926 -0.062377703 -0.204568828 0.079813422 -0.147086903 0.022331496 < [48,] 1927 -0.050223638 -0.197125838 0.096678562 -0.137739423 0.037292146 < [49,] 1928 -0.038069573 -0.190600095 0.114460948 -0.128938384 0.052799237 < [50,] 1929 -0.025915508 -0.184894207 0.133063191 -0.120625768 0.068794751 < [51,] 1930 -0.013761444 -0.179912750 0.152389863 -0.112744726 0.085221839 < [52,] 1931 -0.001607379 -0.175566138 0.172351381 -0.105241887 0.102027130 < [53,] 1932 0.010546686 -0.171772831 0.192866204 -0.098068675 0.119162048 < [54,] 1933 0.022700751 -0.168460244 0.213861747 -0.091181848 0.136583351 < [55,] 1934 0.034854816 -0.165564766 0.235274399 -0.084543511 0.154253144 < [56,] 1935 0.047008881 -0.163031246 0.257049009 -0.078120807 0.172138570 < [57,] 1936 0.059162946 -0.160812199 0.279138092 -0.071885448 0.190211340 < [58,] 1937 0.054383856 -0.155656272 0.264423984 -0.070745832 0.179513544 < [59,] 1938 0.049604765 -0.150814817 0.250024348 -0.069793562 0.169003093 < [60,] 1939 0.044825675 -0.146335320 0.235986670 -0.069056925 0.158708275 < [61,] 1940 0.040046585 -0.142272933 0.222366102 -0.068568777 0.148661946 < [62,] 1941 0.035267494 -0.138691265 0.209226254 -0.068367014 0.138902002 < [63,] 1942 0.030488404 -0.135662903 0.196639710 -0.068494879 0.129471686 < [64,] 1943 0.025709313 -0.133269386 0.184688012 -0.069000947 0.120419573 < [65,] 1944 0.020930223 -0.131600299 0.173460744 -0.069938588 0.111799033 < [66,] 1945 0.016151132 -0.130751068 0.163053332 -0.071364652 0.103666917 < [67,] 1946 0.011372042 -0.130819083 0.153563167 -0.073337158 0.096081242 < [68,] 1947 0.006592951 -0.131897983 0.145083886 -0.075911890 0.089097793 < [69,] 1948 0.001813861 -0.134070373 0.137698095 -0.079138060 0.082765782 < [70,] 1949 -0.002965230 -0.137399877 0.131469418 -0.083053571 0.077123112 < [71,] 1950 -0.007744320 -0.141924001 0.126435361 -0.087680768 0.072192128 < [72,] 1951 -0.012523410 -0.147649510 0.122602689 -0.093023679 0.067976858 < [73,] 1952 -0.017302501 -0.154551551 0.119946549 -0.099067500 0.064462498 < [74,] 1953 -0.022081591 -0.162576801 0.118413618 -0.105780463 0.061617281 < [75,] 1954 -0.026860682 -0.171649733 0.117928369 -0.113117575 0.059396211 < [76,] 1955 -0.031639772 -0.181680427 0.118400882 -0.121025265 0.057745721 < [77,] 1956 -0.036418863 -0.192572281 0.119734555 -0.129445984 0.056608259 < [78,] 1957 -0.041197953 -0.204228457 0.121832550 -0.138322042 0.055926136 < [79,] 1958 -0.045977044 -0.216556537 0.124602449 -0.147598382 0.055644294 < [80,] 1959 -0.050756134 -0.229471397 0.127959128 -0.157224290 0.055712022 < [81,] 1960 -0.055535225 -0.242896613 0.131826164 -0.167154239 0.056083790 < [82,] 1961 -0.060314315 -0.256764812 0.136136182 -0.177348092 0.056719462 < [83,] 1962 -0.065093405 -0.271017346 0.140830535 -0.187770909 0.057584098 < [84,] 1963 -0.069872496 -0.285603587 0.145858595 -0.198392529 0.058647537 < [85,] 1964 -0.074651586 -0.300480064 0.151176891 -0.209187055 0.059883882 < [86,] 1965 -0.060832745 -0.275012124 0.153346634 -0.188428358 0.066762869 < [87,] 1966 -0.047013903 -0.250067729 0.156039922 -0.167981559 0.073953753 < [88,] 1967 -0.033195062 -0.225737656 0.159347533 -0.147900737 0.081510614 < [89,] 1968 -0.019376220 -0.202127937 0.163375497 -0.128249061 0.089496621 < [90,] 1969 -0.005557378 -0.179360353 0.168245596 -0.109099079 0.097984322 < [91,] 1970 0.008261463 -0.157571293 0.174094219 -0.090532045 0.107054971 < [92,] 1971 0.022080305 -0.136907986 0.181068596 -0.072635669 0.116796279 < [93,] 1972 0.035899146 -0.117521176 0.189319469 -0.055499756 0.127298049 < [94,] 1973 0.049717988 -0.099553773 0.198989749 -0.039209443 0.138645419 < [95,] 1974 0.063536830 -0.083126277 0.210199936 -0.023836517 0.150910176 < [96,] 1975 0.077355671 -0.068321437 0.223032779 -0.009430275 0.164141617 < [97,] 1976 0.091174513 -0.055172054 0.237521080 0.003989742 0.178359283 < [98,] 1977 0.104993354 -0.043655763 0.253642472 0.016436858 0.193549851 < [99,] 1978 0.118812196 -0.033698615 0.271323007 0.027955127 0.209669265 < [100,] 1979 0.132631038 -0.025186198 0.290448273 0.038612710 0.226649365 < [101,] 1980 0.146449879 -0.017978697 0.310878456 0.048492899 0.244406859 < [102,] 1981 0.160268721 -0.011925874 0.332463316 0.057685199 0.262852243 < [103,] 1982 0.174087562 -0.006879134 0.355054259 0.066278133 0.281896992 < [104,] 1983 0.187906404 -0.002699621 0.378512429 0.074354424 0.301458384 < [105,] 1984 0.201725246 0.000737403 0.402713088 0.081988382 0.321462109 < [106,] 1985 0.215544087 0.003540988 0.427547186 0.089244975 0.341843199 < [107,] 1986 0.229362929 0.005804749 0.452921108 0.096179971 0.362545886 < [108,] 1987 0.243181770 0.007608108 0.478755433 0.102840688 0.383522853 < [109,] 1988 0.257000612 0.009017980 0.504983244 0.109266987 0.404734237 < [110,] 1989 0.270819454 0.010090540 0.531548367 0.115492336 0.426146571 < [111,] 1990 0.284638295 0.010872901 0.558403689 0.121544800 0.447731790 < [112,] 1991 0.298457137 0.011404596 0.585509677 0.127447933 0.469466340 < [113,] 1992 0.312275978 0.011718869 0.612833087 0.133221539 0.491330418 --- > [1,] 1880 -0.257692308 -3.867500e-01 -0.128634653 -0.340734568 -0.174650048 > [2,] 1881 -0.250769231 -3.767293e-01 -0.124809149 -0.331818355 -0.169720107 > [3,] 1882 -0.243846154 -3.667351e-01 -0.120957249 -0.322919126 -0.164773181 > [4,] 1883 -0.236923077 -3.567692e-01 -0.117076923 -0.314038189 -0.159807965 > [5,] 1884 -0.230000000 -3.468340e-01 -0.113165951 -0.305176970 -0.154823030 > [6,] 1885 -0.223076923 -3.369319e-01 -0.109221900 -0.296337036 -0.149816810 > [7,] 1886 -0.216153846 -3.270656e-01 -0.105242105 -0.287520102 -0.144787590 > [8,] 1887 -0.209230769 -3.172379e-01 -0.101223643 -0.278728048 -0.139733491 > [9,] 1888 -0.202307692 -3.074521e-01 -0.097163311 -0.269962936 -0.134652449 > [10,] 1889 -0.195384615 -2.977116e-01 -0.093057593 -0.261227027 -0.129542204 > [11,] 1890 -0.188461539 -2.880204e-01 -0.088902637 -0.252522800 -0.124400277 > [12,] 1891 -0.181538462 -2.783827e-01 -0.084694220 -0.243852973 -0.119223950 > [13,] 1892 -0.174615385 -2.688030e-01 -0.080427720 -0.235220519 -0.114010250 > [14,] 1893 -0.167692308 -2.592865e-01 -0.076098083 -0.226628691 -0.108755924 > [15,] 1894 -0.160769231 -2.498387e-01 -0.071699793 -0.218081038 -0.103457424 > [16,] 1895 -0.153846154 -2.404655e-01 -0.067226847 -0.209581422 -0.098110886 > [17,] 1896 -0.146923077 -2.311734e-01 -0.062672732 -0.201134035 -0.092712119 > [18,] 1897 -0.140000000 -2.219696e-01 -0.058030409 -0.192743405 -0.087256595 > [19,] 1898 -0.133076923 -2.128615e-01 -0.053292314 -0.184414399 -0.081739447 > [20,] 1899 -0.126153846 -2.038573e-01 -0.048450366 -0.176152218 -0.076155475 > [21,] 1900 -0.119230769 -1.949655e-01 -0.043496005 -0.167962369 -0.070499170 > [22,] 1901 -0.112307692 -1.861951e-01 -0.038420244 -0.159850635 -0.064764750 > [23,] 1902 -0.105384615 -1.775555e-01 -0.033213760 -0.151823015 -0.058946216 > [24,] 1903 -0.098461539 -1.690561e-01 -0.027867017 -0.143885645 -0.053037432 > [25,] 1904 -0.091538462 -1.607065e-01 -0.022370423 -0.136044696 -0.047032227 > [26,] 1905 -0.084615385 -1.525162e-01 -0.016714535 -0.128306245 -0.040924524 > [27,] 1906 -0.077692308 -1.444943e-01 -0.010890287 -0.120676126 -0.034708490 > [28,] 1907 -0.070769231 -1.366492e-01 -0.004889253 -0.113159760 -0.028378702 > [29,] 1908 -0.063846154 -1.289884e-01 0.001296074 -0.105761977 -0.021930331 > [30,] 1909 -0.056923077 -1.215182e-01 0.007672008 -0.098486840 -0.015359314 > [31,] 1910 -0.050000000 -1.142434e-01 0.014243419 -0.091337484 -0.008662516 > [32,] 1911 -0.043076923 -1.071674e-01 0.021013527 -0.084315978 -0.001837868 > [33,] 1912 -0.036153846 -1.002914e-01 0.027983751 -0.077423239 0.005115546 > [34,] 1913 -0.029230769 -9.361519e-02 0.035153653 -0.070658982 0.012197443 > [35,] 1914 -0.022307692 -8.713634e-02 0.042520952 -0.064021740 0.019406355 > [36,] 1915 -0.015384615 -8.085086e-02 0.050081630 -0.057508928 0.026739697 > [37,] 1916 -0.008461538 -7.475318e-02 0.057830107 -0.051116955 0.034193878 > [38,] 1917 -0.001538462 -6.883640e-02 0.065759473 -0.044841376 0.041764453 > [39,] 1918 0.005384615 -6.309252e-02 0.073861755 -0.038677059 0.049446290 > [40,] 1919 0.012307692 -5.751281e-02 0.082128191 -0.032618368 0.057233753 > [41,] 1920 0.019230769 -5.208797e-02 0.090549507 -0.026659334 0.065120873 > [42,] 1921 0.026153846 -4.680847e-02 0.099116161 -0.020793819 0.073101511 > [43,] 1922 0.033076923 -4.166472e-02 0.107818567 -0.015015652 0.081169499 > [44,] 1923 0.040000000 -3.664727e-02 0.116647271 -0.009318753 0.089318753 > [45,] 1924 0.046923077 -3.174694e-02 0.125593095 -0.003697214 0.097543368 > [46,] 1925 0.053846154 -2.695494e-02 0.134647244 0.001854623 0.105837685 > [47,] 1926 0.060769231 -2.226292e-02 0.143801377 0.007342124 0.114196337 > [48,] 1927 0.067692308 -1.766304e-02 0.153047656 0.012770335 0.122614280 > [49,] 1928 0.074615385 -1.314799e-02 0.162378762 0.018143964 0.131086806 > [50,] 1929 0.081538462 -8.710982e-03 0.171787905 0.023467379 0.139609544 > [51,] 1930 0.088461538 -4.345738e-03 0.181268815 0.028744616 0.148178461 > [52,] 1931 0.095384615 -4.649065e-05 0.190815721 0.033979388 0.156789843 > [53,] 1932 0.102307692 4.192055e-03 0.200423329 0.039175101 0.165440284 > [54,] 1933 0.109230769 8.374747e-03 0.210086792 0.044334874 0.174126664 > [55,] 1934 0.116153846 1.250601e-02 0.219801679 0.049461559 0.182846134 > [56,] 1935 0.123076923 1.658990e-02 0.229563945 0.054557757 0.191596090 > [57,] 1936 0.130000000 2.063010e-02 0.239369902 0.059625842 0.200374158 > [58,] 1937 0.130000000 2.554264e-02 0.234457361 0.062786820 0.197213180 > [59,] 1938 0.130000000 3.023953e-02 0.229760466 0.065809042 0.194190958 > [60,] 1939 0.130000000 3.468890e-02 0.225311102 0.068671989 0.191328011 > [61,] 1940 0.130000000 3.885447e-02 0.221145527 0.071352331 0.188647669 > [62,] 1941 0.130000000 4.269563e-02 0.217304372 0.073823926 0.186176074 > [63,] 1942 0.130000000 4.616776e-02 0.213832244 0.076058070 0.183941930 > [64,] 1943 0.130000000 4.922326e-02 0.210776742 0.078024136 0.181975864 > [65,] 1944 0.130000000 5.181327e-02 0.208186727 0.079690683 0.180309317 > [66,] 1945 0.130000000 5.389026e-02 0.206109736 0.081027125 0.178972875 > [67,] 1946 0.130000000 5.541136e-02 0.204588637 0.082005877 0.177994123 > [68,] 1947 0.130000000 5.634212e-02 0.203657879 0.082604774 0.177395226 > [69,] 1948 0.130000000 5.666006e-02 0.203339939 0.082809352 0.177190648 > [70,] 1949 0.130000000 5.635724e-02 0.203642757 0.082614504 0.177385496 > [71,] 1950 0.130000000 5.544123e-02 0.204558768 0.082025096 0.177974904 > [72,] 1951 0.130000000 5.393418e-02 0.206065824 0.081055380 0.178944620 > [73,] 1952 0.130000000 5.187027e-02 0.208129729 0.079727358 0.180272642 > [74,] 1953 0.130000000 4.929223e-02 0.210707774 0.078068513 0.181931487 > [75,] 1954 0.130000000 4.624751e-02 0.213752495 0.076109385 0.183890615 > [76,] 1955 0.130000000 4.278497e-02 0.217215029 0.073881414 0.186118586 > [77,] 1956 0.130000000 3.895228e-02 0.221047722 0.071415265 0.188584735 > [78,] 1957 0.130000000 3.479412e-02 0.225205878 0.068739695 0.191260305 > [79,] 1958 0.130000000 3.035124e-02 0.229648764 0.065880916 0.194119084 > [80,] 1959 0.130000000 2.565999e-02 0.234340014 0.062862328 0.197137672 > [81,] 1960 0.130000000 2.075236e-02 0.239247637 0.059704514 0.200295486 > [82,] 1961 0.130000000 1.565622e-02 0.244343776 0.056425398 0.203574602 > [83,] 1962 0.130000000 1.039566e-02 0.249604337 0.053040486 0.206959514 > [84,] 1963 0.130000000 4.991436e-03 0.255008564 0.049563131 0.210436869 > [85,] 1964 0.130000000 -5.386147e-04 0.260538615 0.046004815 0.213995185 > [86,] 1965 0.143076923 1.926909e-02 0.266884757 0.063412665 0.222741181 > [87,] 1966 0.156153846 3.876772e-02 0.273539971 0.080621643 0.231686050 > [88,] 1967 0.169230769 5.790379e-02 0.280557753 0.097597325 0.240864213 > [89,] 1968 0.182307692 7.661491e-02 0.288000479 0.114299577 0.250315807 > [90,] 1969 0.195384615 9.482963e-02 0.295939602 0.130682422 0.260086809 > [91,] 1970 0.208461538 1.124682e-01 0.304454863 0.146694551 0.270228526 > [92,] 1971 0.221538461 1.294450e-01 0.313631914 0.162280850 0.280796073 > [93,] 1972 0.234615385 1.456729e-01 0.323557850 0.177385278 0.291845491 > [94,] 1973 0.247692308 1.610702e-01 0.334314435 0.191955225 0.303429390 > [95,] 1974 0.260769231 1.755689e-01 0.345969561 0.205947004 0.315591457 > [96,] 1975 0.273846154 1.891238e-01 0.358568478 0.219331501 0.328360807 > [97,] 1976 0.286923077 2.017191e-01 0.372127073 0.232098492 0.341747662 > [98,] 1977 0.300000000 2.133707e-01 0.386629338 0.244258277 0.355741722 > [99,] 1978 0.313076923 2.241239e-01 0.402029922 0.255840039 0.370313807 > [100,] 1979 0.326153846 2.340468e-01 0.418260863 0.266887506 0.385420186 > [101,] 1980 0.339230769 2.432212e-01 0.435240360 0.277453314 0.401008224 > [102,] 1981 0.352307692 2.517341e-01 0.452881314 0.287593508 0.417021876 > [103,] 1982 0.365384615 2.596711e-01 0.471098085 0.297363192 0.433406039 > [104,] 1983 0.378461538 2.671121e-01 0.489810964 0.306813654 0.450109423 > [105,] 1984 0.391538461 2.741284e-01 0.508948530 0.315990851 0.467086072 > [106,] 1985 0.404615384 2.807823e-01 0.528448443 0.324934896 0.484295873 > [107,] 1986 0.417692308 2.871274e-01 0.548257238 0.333680190 0.501704425 > [108,] 1987 0.430769231 2.932089e-01 0.568329576 0.342255907 0.519282554 > [109,] 1988 0.443846154 2.990650e-01 0.588627259 0.350686626 0.537005682 > [110,] 1989 0.456923077 3.047279e-01 0.609118218 0.358992981 0.554853173 > [111,] 1990 0.470000000 3.102244e-01 0.629775550 0.367192284 0.572807716 > [112,] 1991 0.483076923 3.155772e-01 0.650576667 0.375299067 0.590854778 > [113,] 1992 0.496153846 3.208051e-01 0.671502569 0.383325558 0.608982134 478,480d444 < Warning message: < In cobs(year, temp, knots.add = TRUE, degree = 1, constraint = "none", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 490,492d453 < Warning message: < In cobs(year, temp, nknots = 9, knots.add = TRUE, degree = 1, constraint = "none", : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 496,499d456 < < **** ERROR in algorithm: ifl = 22 < < 502,503c459,460 < coef[1:5]: -0.39324840, -0.28115087, 0.05916295, -0.07465159, 0.31227753 < R^2 = 73.22% ; empirical tau (over all): 63/113 = 0.5575221 (target tau= 0.5) --- > coef[1:5]: -0.40655906, -0.31473700, 0.05651823, -0.05681818, 0.28681956 > R^2 = 72.56% ; empirical tau (over all): 54/113 = 0.4778761 (target tau= 0.5) 509,512d465 < < **** ERROR in algorithm: ifl = 22 < < 515,517d467 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 522,525d471 < < **** ERROR in algorithm: ifl = 22 < < 528,530d473 < Warning message: < In cobs(year, temp, nknots = length(a50$knots), knots = a50$knot, : < drqssbc2(): Not all flags are normal (== 1), ifl : 22 532,534c475 < [1] 1 2 9 10 17 18 20 21 22 23 26 27 35 36 42 47 48 49 52 < [20] 53 58 59 61 62 63 64 65 68 73 74 78 79 80 81 82 83 84 88 < [39] 90 91 94 98 100 101 102 104 108 109 111 112 --- > [1] 10 18 21 22 47 61 68 74 78 79 102 111 536,539c477 < [1] 3 4 5 6 7 8 11 12 13 14 15 16 19 24 25 28 29 30 31 < [20] 32 33 34 37 38 39 40 41 43 44 45 46 50 51 54 55 56 57 60 < [39] 66 67 69 70 71 72 75 76 77 85 86 87 89 92 93 95 96 97 99 < [58] 103 105 106 107 110 113 --- > [1] 5 8 25 38 39 50 54 77 85 97 113 Running ‘wind.R’ [10s/29s] Running the tests in ‘tests/ex2-long.R’ failed. Complete output: > #### > suppressMessages(library(cobs)) > > source(system.file("util.R", package = "cobs")) > (doExtra <- doExtras()) [1] FALSE > source(system.file("test-tools-1.R", package="Matrix", mustWork=TRUE)) Loading required package: tools > showProc.time() Time (user system elapsed): 0.003 0 0.066 > > options(digits = 5) > if(!dev.interactive(orNone=TRUE)) pdf("ex2.pdf") > > set.seed(821) > x <- round(sort(rnorm(200)), 3) # rounding -> multiple values > sum(duplicated(x)) # 9 [1] 3 > y <- (fx <- exp(-x)) + rt(200,4)/4 > summaryCobs(cxy <- cobs(x,y, "decrease")) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease") $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : chr "AIC" $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0.72 -0.149 0 -0.195 0.545 ... $ fitted : num [1:200] 11.98 8.39 6.67 6.07 5.87 ... $ coef : num [1:5] 11.9769 3.5917 1.0544 0.0295 0.0295 $ knots : num [1:4] -2.557 -0.813 0.418 2.573 $ k0 : num 5 $ k : num 5 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 0 $ icyc : int 11 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 11.4448128 11.6875576 11.976923 12.26629 12.50903 2 10.9843366 11.2126114 11.484728 11.75684 11.98512 3 10.5344633 10.7489871 11.004712 11.26044 11.47496 4 10.0951784 10.2966768 10.536874 10.77707 10.97857 5 9.6664684 9.8556730 10.081215 10.30676 10.49596 6 9.2483213 9.4259693 9.637736 9.84950 10.02715 7 8.8407282 9.0075609 9.206435 9.40531 9.57214 8 8.4436848 8.6004453 8.787313 8.97418 9.13094 9 8.0571928 8.2046236 8.380369 8.55612 8.70355 10 7.6812627 7.8201015 7.985605 8.15111 8.28995 11 7.3159159 7.4468904 7.603020 7.75915 7.89012 12 6.9611870 7.0850095 7.232613 7.38022 7.50404 13 6.6171269 6.7344861 6.874385 7.01428 7.13164 14 6.2838041 6.3953578 6.528336 6.66131 6.77287 15 5.9613061 6.0676719 6.194466 6.32126 6.42763 16 5.6497392 5.7514863 5.872775 5.99406 6.09581 17 5.3492272 5.4468683 5.563262 5.67966 5.77730 18 5.0599086 5.1538933 5.265928 5.37796 5.47195 19 4.7819325 4.8726424 4.980774 5.08891 5.17961 20 4.5154542 4.6031999 4.707798 4.81240 4.90014 21 4.2606295 4.3456507 4.447001 4.54835 4.63337 22 4.0176099 4.1000771 4.198383 4.29669 4.37916 23 3.7865383 3.8665567 3.961943 4.05733 4.13735 24 3.5675443 3.6451602 3.737683 3.83021 3.90782 25 3.3607413 3.4359491 3.525601 3.61525 3.69046 26 3.1662231 3.2389744 3.325698 3.41242 3.48517 27 2.9840608 3.0542750 3.137974 3.22167 3.29189 28 2.8142997 2.8818753 2.962429 3.04298 3.11056 29 2.6569546 2.7217833 2.799063 2.87634 2.94117 30 2.5120031 2.5739870 2.647875 2.72176 2.78375 31 2.3793776 2.4384496 2.508867 2.57928 2.63836 32 2.2589520 2.3151025 2.382037 2.44897 2.50512 33 2.1505256 2.2038366 2.267386 2.33094 2.38425 34 2.0538038 2.1044916 2.164914 2.22534 2.27602 35 1.9677723 2.0162522 2.074043 2.13183 2.18031 36 1.8846710 1.9316617 1.987677 2.04369 2.09068 37 1.8024456 1.8486425 1.903712 1.95878 2.00498 38 1.7213655 1.7673410 1.822146 1.87695 1.92293 39 1.6417290 1.6879196 1.742982 1.79804 1.84423 40 1.5638322 1.6105393 1.666217 1.72189 1.76860 41 1.4879462 1.5353474 1.591852 1.64836 1.69576 42 1.4143040 1.4624707 1.519888 1.57731 1.62547 43 1.3430975 1.3920136 1.450324 1.50864 1.55755 44 1.2744792 1.3240589 1.383161 1.44226 1.49184 45 1.2085658 1.2586702 1.318397 1.37812 1.42823 46 1.1454438 1.1958944 1.256034 1.31617 1.36662 47 1.0851730 1.1357641 1.196072 1.25638 1.30697 48 1.0277900 1.0782992 1.138509 1.19872 1.24923 49 0.9733099 1.0235079 1.083347 1.14319 1.19338 50 0.9217268 0.9713870 1.030585 1.08978 1.13944 51 0.8730129 0.9219214 0.980223 1.03852 1.08743 52 0.8271160 0.8750827 0.932262 0.98944 1.03741 53 0.7839554 0.8308269 0.886700 0.94257 0.98945 54 0.7434158 0.7890916 0.843540 0.89799 0.94366 55 0.7053406 0.7497913 0.802779 0.85577 0.90022 56 0.6695233 0.7128138 0.764419 0.81602 0.85931 57 0.6357022 0.6780170 0.728459 0.77890 0.82121 58 0.6035616 0.6452289 0.694899 0.74457 0.78624 59 0.5724566 0.6139693 0.663455 0.71294 0.75445 60 0.5410437 0.5829503 0.632905 0.68286 0.72477 61 0.5094333 0.5521679 0.603110 0.65405 0.69679 62 0.4778879 0.5217649 0.574069 0.62637 0.67025 63 0.4466418 0.4918689 0.545782 0.59970 0.64492 64 0.4158910 0.4625864 0.518250 0.57391 0.62061 65 0.3857918 0.4340022 0.491472 0.54894 0.59715 66 0.3564634 0.4061813 0.465448 0.52471 0.57443 67 0.3279928 0.3791711 0.440179 0.50119 0.55236 68 0.3004403 0.3530042 0.415663 0.47832 0.53089 69 0.2738429 0.3277009 0.391903 0.45610 0.50996 70 0.2482184 0.3032707 0.368896 0.43452 0.48957 71 0.2235676 0.2797141 0.346644 0.41357 0.46972 72 0.1998762 0.2570233 0.325146 0.39327 0.45042 73 0.1771158 0.2351830 0.304402 0.37362 0.43169 74 0.1552452 0.2141706 0.284413 0.35466 0.41358 75 0.1342101 0.1939567 0.265178 0.33640 0.39615 76 0.1139444 0.1745054 0.246697 0.31889 0.37945 77 0.0943704 0.1557743 0.228971 0.30217 0.36357 78 0.0753996 0.1377153 0.211999 0.28628 0.34860 79 0.0569347 0.1202755 0.195781 0.27129 0.33463 80 0.0388708 0.1033980 0.180318 0.25724 0.32177 81 0.0210989 0.0870233 0.165609 0.24419 0.31012 82 0.0035089 0.0710917 0.151654 0.23222 0.29980 83 -0.0140062 0.0555449 0.138454 0.22136 0.29091 84 -0.0315470 0.0403283 0.126008 0.21169 0.28356 85 -0.0492034 0.0253928 0.114316 0.20324 0.27783 86 -0.0670524 0.0106968 0.103378 0.19606 0.27381 87 -0.0851561 -0.0037936 0.093195 0.19018 0.27155 88 -0.1035613 -0.0181039 0.083766 0.18564 0.27109 89 -0.1223000 -0.0322515 0.075091 0.18243 0.27248 90 -0.1413914 -0.0462467 0.067171 0.18059 0.27573 91 -0.1608432 -0.0600938 0.060005 0.18010 0.28085 92 -0.1806546 -0.0737923 0.053594 0.18098 0.28784 93 -0.2008180 -0.0873382 0.047936 0.18321 0.29669 94 -0.2213213 -0.1007247 0.043033 0.18679 0.30739 95 -0.2421494 -0.1139438 0.038884 0.19171 0.31992 96 -0.2632855 -0.1269863 0.035490 0.19797 0.33427 97 -0.2847123 -0.1398427 0.032850 0.20554 0.35041 98 -0.3064126 -0.1525038 0.030964 0.21443 0.36834 99 -0.3283696 -0.1649603 0.029833 0.22463 0.38804 100 -0.3505674 -0.1772037 0.029456 0.23611 0.40948 knots : [1] -2.557 -0.813 0.418 2.573 coef : [1] 11.976924 3.591747 1.054378 0.029456 0.029456 > 1 - sum(cxy $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 97.6% [1] 0.95969 > showProc.time() Time (user system elapsed): 0.751 0.039 3.036 > > if(doExtra) { + ## Interpolation + cxyI <- cobs(x,y, "decrease", knots = unique(x)) + ## takes quite long : 63 sec. (Pent. III, 700 MHz) --- this is because + ## each knot is added sequentially... {{improve!}} + + summaryCobs(cxyI)# only 7 knots remaining! + showProc.time() + } > > summaryCobs(cxy1 <- cobs(x,y, "decrease", lambda = 0.1)) List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease", lambda = 0.1) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : NULL $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0 -0.315 0 -0.161 0.586 ... $ fitted : num [1:200] 12.7 8.56 6.67 6.04 5.83 ... $ coef : num [1:22] 12.7 5.78 3.16 2.43 2.11 ... $ knots : num [1:20] -2.557 -1.34 -1.03 -0.901 -0.772 ... $ k0 : int 15 $ k : int 15 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 0.1 $ icyc : int 23 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 12.0912847 12.4849933 12.6970034 12.90901 13.30272 2 11.5452819 11.9166521 12.1166331 12.31661 12.68798 3 11.0146966 11.3650966 11.5537853 11.74247 12.09287 4 10.4995535 10.8303355 11.0084599 11.18658 11.51737 5 9.9998870 10.3123808 10.4806571 10.64893 10.96143 6 9.5157430 9.8112485 9.9703768 10.12951 10.42501 7 9.0471805 9.3269594 9.4776191 9.62828 9.90806 8 8.5942728 8.8595392 9.0023838 9.14523 9.41049 9 8.1571088 8.4090188 8.5446710 8.68032 8.93223 10 7.7357927 7.9754347 8.1044808 8.23353 8.47317 11 7.3304438 7.5588289 7.6818131 7.80480 8.03318 12 6.9411951 7.1592477 7.2766679 7.39409 7.61214 13 6.5681906 6.7767415 6.8890452 7.00135 7.20990 14 6.2115819 6.4113636 6.5189450 6.62653 6.82631 15 5.8715240 6.0631680 6.1663674 6.26957 6.46121 16 5.5481704 5.7322086 5.8313123 5.93042 6.11445 17 5.2416676 5.4185366 5.5137796 5.60902 5.78589 18 4.9521494 5.1221988 5.2137695 5.30534 5.47539 19 4.6797308 4.8432355 4.9312819 5.01933 5.18283 20 4.4245017 4.5816781 4.6663169 4.75096 4.90813 21 4.1865199 4.3375470 4.4188743 4.50020 4.65123 22 3.9658032 4.1108482 4.1889542 4.26706 4.41211 23 3.7623206 3.9015710 3.9765567 4.05154 4.19079 24 3.5759813 3.7096836 3.7816817 3.85368 3.98738 25 3.4043771 3.5329043 3.6021155 3.67133 3.79985 26 3.2347309 3.3585931 3.4252922 3.49199 3.61585 27 3.0652721 3.1848437 3.2492325 3.31362 3.43319 28 2.8962030 3.0117271 3.0739363 3.13615 3.25167 29 2.7276530 2.8392885 2.8994037 2.95952 3.07115 30 2.5596612 2.6675415 2.7256346 2.78373 2.89161 31 2.3944947 2.4988186 2.5549966 2.61117 2.71550 32 2.2444821 2.3455939 2.4000421 2.45449 2.55560 33 2.1114672 2.2097080 2.2626102 2.31551 2.41375 34 1.9954176 2.0911496 2.1427009 2.19425 2.28998 35 1.8963846 1.9899366 2.0403140 2.09069 2.18424 36 1.8125024 1.9041996 1.9535781 2.00296 2.09465 37 1.7347658 1.8248332 1.8733340 1.92183 2.01190 38 1.6620975 1.7506630 1.7983550 1.84605 1.93461 39 1.5945123 1.6816941 1.7286411 1.77559 1.86277 40 1.5278221 1.6138190 1.6601279 1.70644 1.79243 41 1.4573347 1.5423451 1.5881227 1.63390 1.71891 42 1.3839943 1.4682138 1.5135655 1.55892 1.64314 43 1.3227219 1.4063482 1.4513806 1.49641 1.58004 44 1.2787473 1.3619265 1.4067181 1.45151 1.53469 45 1.2488624 1.3317463 1.3763789 1.42101 1.50390 46 1.2168724 1.2994789 1.3439621 1.38845 1.47105 47 1.1806389 1.2628708 1.3071522 1.35143 1.43367 48 1.1401892 1.2219316 1.2659495 1.30997 1.39171 49 1.0941843 1.1754044 1.2191410 1.26288 1.34410 50 1.0326549 1.1134412 1.1569442 1.20045 1.28123 51 0.9535058 1.0339215 1.0772249 1.12053 1.20094 52 0.8632281 0.9433870 0.9865521 1.02972 1.10988 53 0.7875624 0.8676441 0.9107678 0.95389 1.03397 54 0.7267897 0.8069673 0.8501425 0.89332 0.97350 55 0.6673925 0.7477244 0.7909827 0.83424 0.91457 56 0.6072642 0.6877460 0.7310850 0.77442 0.85491 57 0.5471548 0.6278279 0.6712700 0.71471 0.79539 58 0.4995140 0.5804770 0.6240752 0.66767 0.74864 59 0.4686435 0.5499607 0.5937495 0.63754 0.71886 60 0.4531016 0.5348803 0.5789177 0.62296 0.70473 61 0.4381911 0.5206110 0.5649937 0.60938 0.69180 62 0.4199957 0.5032331 0.5480561 0.59288 0.67612 63 0.4036491 0.4879280 0.5333117 0.57870 0.66297 64 0.3952493 0.4807890 0.5268517 0.57291 0.65845 65 0.3926229 0.4796600 0.5265291 0.57340 0.66044 66 0.3900185 0.4787485 0.5265291 0.57431 0.66304 67 0.3870480 0.4776752 0.5264774 0.57528 0.66591 68 0.3738545 0.4665585 0.5164792 0.56640 0.65910 69 0.3432056 0.4380737 0.4891596 0.54025 0.63511 70 0.2950830 0.3922142 0.4445189 0.49682 0.59395 71 0.2295290 0.3291123 0.3827373 0.43636 0.53595 72 0.1670195 0.2693294 0.3244228 0.37952 0.48183 73 0.1216565 0.2269375 0.2836308 0.34032 0.44561 74 0.0934100 0.2019260 0.2603613 0.31880 0.42731 75 0.0787462 0.1907702 0.2510947 0.31142 0.42344 76 0.0658428 0.1813823 0.2435998 0.30582 0.42136 77 0.0538230 0.1727768 0.2368329 0.30089 0.41984 78 0.0427388 0.1649719 0.2307938 0.29662 0.41885 79 0.0325663 0.1579592 0.2254827 0.29301 0.41840 80 0.0232151 0.1517072 0.2208995 0.29009 0.41858 81 0.0145359 0.1461634 0.2170442 0.28792 0.41955 82 0.0063272 0.1412575 0.2139168 0.28658 0.42151 83 -0.0016568 0.1369034 0.2115173 0.28613 0.42469 84 -0.0096967 0.1330028 0.2098457 0.28669 0.42939 85 -0.0180957 0.1294496 0.2089021 0.28835 0.43590 86 -0.0272134 0.1260791 0.2086264 0.29117 0.44447 87 -0.0387972 0.1210358 0.2071052 0.29317 0.45301 88 -0.0534279 0.1135207 0.2034217 0.29332 0.46027 89 -0.0709531 0.1035871 0.1975762 0.29157 0.46611 90 -0.0912981 0.0912612 0.1895684 0.28788 0.47043 91 -0.1144525 0.0765465 0.1793985 0.28225 0.47325 92 -0.1404576 0.0594287 0.1670665 0.27470 0.47459 93 -0.1693951 0.0398791 0.1525723 0.26527 0.47454 94 -0.2013769 0.0178586 0.1359159 0.25397 0.47321 95 -0.2365365 -0.0066795 0.1170974 0.24087 0.47073 96 -0.2750210 -0.0337868 0.0961167 0.22602 0.46725 97 -0.3169840 -0.0635170 0.0729738 0.20946 0.46293 98 -0.3625797 -0.0959240 0.0476688 0.19126 0.45792 99 -0.4119579 -0.1310604 0.0202016 0.17146 0.45236 100 -0.4652595 -0.1689754 -0.0094278 0.15012 0.44640 knots : [1] -2.557 -1.340 -1.030 -0.901 -0.772 -0.586 -0.448 -0.305 -0.092 0.054 [11] 0.163 0.329 0.481 0.606 0.722 0.859 1.065 1.244 1.837 2.573 coef : [1] 12.6970048 5.7788265 3.1620633 2.4291174 2.1069607 1.8462166 [7] 1.6371062 1.4304905 1.3348346 1.1758220 0.9413974 0.7863913 [13] 0.5998958 0.5697029 0.5265291 0.5265291 0.5265291 0.2707227 [19] 0.2086712 0.2086712 -0.0094278 6.5257497 > 1 - sum(cxy1 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.2% [1] 0.96169 > > summaryCobs(cxy2 <- cobs(x,y, "decrease", lambda = 1e-2)) List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease", lambda = 0.01) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : NULL $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0 -0.146 0.1468 -0.0463 0.6868 ... $ fitted : num [1:200] 12.7 8.39 6.52 5.92 5.73 ... $ coef : num [1:22] 12.7 5.34 3.59 2.19 2.13 ... $ knots : num [1:20] -2.557 -1.34 -1.03 -0.901 -0.772 ... $ k0 : int 21 $ k : int 21 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 0.01 $ icyc : int 35 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 12.0477594 12.4997491 12.6970071 12.89427 13.34625 2 11.4687308 11.8950752 12.0811411 12.26721 12.69355 3 10.9090823 11.3113523 11.4869116 11.66247 12.06474 4 10.3688404 10.7485883 10.9143185 11.08005 11.45980 5 9.8480420 10.2067945 10.3633618 10.51993 10.87868 6 9.3467363 9.6859859 9.8340417 9.98210 10.32135 7 8.8649866 9.1861815 9.3263579 9.46653 9.78773 8 8.4028715 8.7074055 8.8403106 8.97322 9.27775 9 7.9604861 8.2496865 8.3758998 8.50211 8.79131 10 7.5379421 7.8130586 7.9331254 8.05319 8.32831 11 7.1353676 7.3975607 7.5119874 7.62641 7.88861 12 6.7529050 7.0032361 7.1124859 7.22174 7.47207 13 6.3907086 6.6301316 6.7346209 6.83911 7.07853 14 6.0489410 6.2782966 6.3783923 6.47849 6.70784 15 5.7277684 5.9477816 6.0438001 6.13982 6.35983 16 5.4273551 5.6386366 5.7308444 5.82305 6.03433 17 5.1478583 5.3509094 5.4395252 5.52814 5.73119 18 4.8894214 5.0846433 5.1698424 5.25504 5.45026 19 4.6521676 4.8398760 4.9217960 5.00372 5.19142 20 4.4361933 4.6166367 4.6953861 4.77414 4.95458 21 4.2415605 4.4149443 4.4906127 4.56628 4.73966 22 4.0682883 4.2348044 4.3074756 4.38015 4.54666 23 3.9163432 4.0762071 4.1459751 4.21574 4.37561 24 3.7856282 3.9391227 4.0061110 4.07310 4.22659 25 3.6683774 3.8159306 3.8803259 3.94472 4.09227 26 3.5214653 3.6636629 3.7257209 3.78778 3.92998 27 3.3383583 3.4756303 3.5355387 3.59545 3.73272 28 3.1192735 3.2518988 3.3097793 3.36766 3.50028 29 2.8643493 2.9925103 3.0484425 3.10437 3.23254 30 2.5736278 2.6974778 2.7515286 2.80558 2.92943 31 2.2696062 2.3893733 2.4416422 2.49391 2.61368 32 2.0718959 2.1879754 2.2386350 2.28929 2.40537 33 1.9979346 2.1107181 2.1599392 2.20916 2.32194 34 1.9710324 2.0809358 2.1288999 2.17686 2.28677 35 1.9261503 2.0335510 2.0804229 2.12729 2.23470 36 1.8645775 1.9698487 2.0157914 2.06173 2.16701 37 1.7927585 1.8961587 1.9412848 1.98641 2.08981 38 1.7116948 1.8133707 1.8577443 1.90212 2.00379 39 1.6214021 1.7214896 1.7651699 1.80885 1.90894 40 1.5242004 1.6229275 1.6660141 1.70910 1.80783 41 1.4229217 1.5205162 1.5631086 1.60570 1.70330 42 1.3194940 1.4161806 1.4583766 1.50057 1.59726 43 1.2442053 1.3402109 1.3821098 1.42401 1.52001 44 1.2075941 1.3030864 1.3447613 1.38644 1.48193 45 1.2023778 1.2975311 1.3390581 1.38059 1.47574 46 1.1914924 1.2863272 1.3277152 1.36910 1.46394 47 1.1698641 1.2642688 1.3054691 1.34667 1.44107 48 1.1375221 1.2313649 1.2723199 1.31327 1.40712 49 1.0934278 1.1866710 1.2273643 1.26806 1.36130 50 1.0300956 1.1228408 1.1633168 1.20379 1.29654 51 0.9459780 1.0382977 1.0785880 1.11888 1.21120 52 0.8492712 0.9412961 0.9814577 1.02162 1.11364 53 0.7724392 0.8643755 0.9044985 0.94462 1.03656 54 0.7154255 0.8074718 0.8476428 0.88781 0.97986 55 0.6587891 0.7510125 0.7912608 0.83151 0.92373 56 0.5994755 0.6918710 0.7321944 0.77252 0.86491 57 0.5383570 0.6309722 0.6713915 0.71181 0.80443 58 0.4898228 0.5827709 0.6233354 0.66390 0.75685 59 0.4588380 0.5521926 0.5929345 0.63368 0.72703 60 0.4438719 0.5377564 0.5787296 0.61970 0.71359 61 0.4293281 0.5239487 0.5652432 0.60654 0.70116 62 0.4110511 0.5066103 0.5483143 0.59002 0.68558 63 0.3944126 0.4911673 0.5333932 0.57562 0.67237 64 0.3857958 0.4839980 0.5268556 0.56971 0.66792 65 0.3830000 0.4829213 0.5265291 0.57014 0.67006 66 0.3802084 0.4820731 0.5265291 0.57099 0.67285 67 0.3770181 0.4810608 0.5264673 0.57187 0.67592 68 0.3616408 0.4680678 0.5145149 0.56096 0.66739 69 0.3254129 0.4343244 0.4818557 0.52939 0.63830 70 0.2683149 0.3798245 0.4284897 0.47715 0.58866 71 0.1904294 0.3047541 0.3546478 0.40454 0.51887 72 0.1179556 0.2354105 0.2866704 0.33793 0.45539 73 0.0689088 0.1897746 0.2425231 0.29527 0.41614 74 0.0432569 0.1678366 0.2222059 0.27658 0.40115 75 0.0359906 0.1645977 0.2207246 0.27685 0.40546 76 0.0301934 0.1628364 0.2207246 0.27861 0.41126 77 0.0245630 0.1611257 0.2207246 0.28032 0.41689 78 0.0191553 0.1594827 0.2207246 0.28197 0.42229 79 0.0139446 0.1578996 0.2207246 0.28355 0.42750 80 0.0088340 0.1563468 0.2207246 0.28510 0.43262 81 0.0036634 0.1547759 0.2207246 0.28667 0.43779 82 -0.0017830 0.1531211 0.2207246 0.28833 0.44323 83 -0.0077688 0.1513025 0.2207246 0.29015 0.44922 84 -0.0145948 0.1492286 0.2207246 0.29222 0.45604 85 -0.0225859 0.1468007 0.2207246 0.29465 0.46404 86 -0.0321107 0.1438739 0.2206774 0.29748 0.47347 87 -0.0445016 0.1389916 0.2190720 0.29915 0.48265 88 -0.0601227 0.1315395 0.2151851 0.29883 0.49049 89 -0.0788103 0.1215673 0.2090164 0.29647 0.49684 90 -0.1004844 0.1090993 0.2005661 0.29203 0.50162 91 -0.1251339 0.0941388 0.1898342 0.28553 0.50480 92 -0.1528032 0.0766725 0.1768206 0.27697 0.50644 93 -0.1835797 0.0566736 0.1615253 0.26638 0.50663 94 -0.2175834 0.0341058 0.1439484 0.25379 0.50548 95 -0.2549574 0.0089256 0.1240898 0.23925 0.50314 96 -0.2958592 -0.0189149 0.1019496 0.22281 0.49976 97 -0.3404537 -0.0494657 0.0775277 0.20452 0.49551 98 -0.3889062 -0.0827771 0.0508241 0.18443 0.49055 99 -0.4413769 -0.1188979 0.0218389 0.16258 0.48505 100 -0.4980173 -0.1578738 -0.0094279 0.13902 0.47916 knots : [1] -2.557 -1.340 -1.030 -0.901 -0.772 -0.586 -0.448 -0.305 -0.092 0.054 [11] 0.163 0.329 0.481 0.606 0.722 0.859 1.065 1.244 1.837 2.573 coef : [1] 12.697009 5.337850 3.591398 2.187733 2.133993 1.936435 1.631856 [8] 1.340650 1.340650 1.185401 0.931750 0.789326 0.598245 0.570221 [15] 0.526529 0.526529 0.526529 0.220725 0.220725 0.220725 -0.009428 [22] 46.342964 > 1 - sum(cxy2 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.2% (tiny bit better) [1] 0.96257 > > summaryCobs(cxy3 <- cobs(x,y, "decrease", lambda = 1e-6, nknots = 60)) List of 24 $ call : language cobs(x = x, y = y, constraint = "decrease", nknots = 60, lambda = 1e-06) $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : NULL $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:200] -2.56 -2.14 -1.91 -1.81 -1.78 ... $ y : num [1:200] 12.7 8.24 6.67 5.88 6.42 ... $ resid : num [1:200] 0 0 0 -0.382 0.309 ... $ fitted : num [1:200] 12.7 8.24 6.67 6.26 6.11 ... $ coef : num [1:62] 12.7 7.69 6.09 4.35 3.73 3.73 2.74 2.57 2.57 2.25 ... $ knots : num [1:60] -2.56 -1.81 -1.73 -1.38 -1.23 ... $ k0 : int 61 $ k : int 61 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 488 $ lambda : num 1e-06 $ icyc : int 46 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 12.0247124 12.56890432 12.6970139 12.825123 13.36932 2 11.3797843 11.89599414 12.0175164 12.139039 12.65525 3 10.7668218 11.25721357 11.3726579 11.488102 11.97849 4 10.1860204 10.65259986 10.7624385 10.872277 11.33886 5 9.6375946 10.08219388 10.1868581 10.291522 10.73612 6 9.1217734 9.54603927 9.6459167 9.745794 10.17006 7 8.6387946 9.04418136 9.1396144 9.235048 9.64043 8 8.1888978 8.57666578 8.6679512 8.759237 9.14700 9 7.7723156 8.14353686 8.2309270 8.318317 8.68954 10 7.3892646 7.74483589 7.8285418 7.912248 8.26782 11 7.0399352 7.38059913 7.4607957 7.540992 7.88166 12 6.7244802 7.05085572 7.1276886 7.204521 7.53090 13 6.4430029 6.75562533 6.8292205 6.902816 7.21544 14 6.1955428 6.49491547 6.5653915 6.635868 6.93524 15 5.9820595 6.26871848 6.3362016 6.403685 6.69034 16 5.7696526 6.04428975 6.1089428 6.173596 6.44823 17 5.4339991 5.69759119 5.7596440 5.821697 6.08529 18 5.0454361 5.29908138 5.3587927 5.418504 5.67215 19 4.6993977 4.94405130 5.0016458 5.059240 5.30389 20 4.3963458 4.63268699 4.6883247 4.743962 4.98030 21 4.1365583 4.36504142 4.4188292 4.472617 4.70110 22 3.9202312 4.14115193 4.1931594 4.245167 4.46609 23 3.7474595 3.96103662 4.0113153 4.061594 4.27517 24 3.6182953 3.82478434 3.8733944 3.922005 4.12849 25 3.5335861 3.73343196 3.7804782 3.827524 4.02737 26 3.4937186 3.68729597 3.7328665 3.778437 3.97201 27 3.4752667 3.66292175 3.7070981 3.751274 3.93893 28 3.3043525 3.48641351 3.5292729 3.572132 3.75419 29 2.9458452 3.12249549 3.1640812 3.205667 3.38232 30 2.4899112 2.66132542 2.7016785 2.742031 2.91345 31 2.3652956 2.53186083 2.5710724 2.610284 2.77685 32 2.2382402 2.40029503 2.4384448 2.476594 2.63865 33 2.0486975 2.20653724 2.2436947 2.280852 2.43869 34 2.0511798 2.20522276 2.2414864 2.277750 2.43179 35 2.0553528 2.20601792 2.2414864 2.276955 2.42762 36 2.0385642 2.18623332 2.2209965 2.255760 2.40343 37 1.8391470 1.98414706 2.0182819 2.052417 2.19742 38 1.6312788 1.77395114 1.8075380 1.841125 1.98380 39 1.5314449 1.67192652 1.7049976 1.738069 1.87855 40 1.5208780 1.65927041 1.6918497 1.724429 1.86282 41 1.4986364 1.63513027 1.6672626 1.699395 1.83589 42 1.4498027 1.58470514 1.6164629 1.648221 1.78312 43 1.2247043 1.35830771 1.3897596 1.421211 1.55481 44 1.1772885 1.30980813 1.3410049 1.372202 1.50472 45 1.1781750 1.30997706 1.3410049 1.372033 1.50383 46 1.1786125 1.31005757 1.3410014 1.371945 1.50339 47 1.1644262 1.29555858 1.3264288 1.357299 1.48843 48 1.1223208 1.25286982 1.2836027 1.314336 1.44488 49 1.0583227 1.18805529 1.2185960 1.249137 1.37887 50 1.0360396 1.16504088 1.1954094 1.225778 1.35478 51 1.0366880 1.16516444 1.1954094 1.225654 1.35413 52 0.9728290 1.10089058 1.1310379 1.161185 1.28925 53 0.6458992 0.77387319 0.8039998 0.834127 0.96210 54 0.6278378 0.75589463 0.7860408 0.816187 0.94424 55 0.6233664 0.75144260 0.7815933 0.811744 0.93982 56 0.6203139 0.74853170 0.7787158 0.808900 0.93712 57 0.4831205 0.61171664 0.6419898 0.672263 0.80086 58 0.4152141 0.54435194 0.5747526 0.605153 0.73429 59 0.4143942 0.54419570 0.5747526 0.605309 0.73511 60 0.4133407 0.54399495 0.5747526 0.605510 0.73616 61 0.3912541 0.52305164 0.5540784 0.585105 0.71690 62 0.3615872 0.49479624 0.5261553 0.557514 0.69072 63 0.3595156 0.49440150 0.5261553 0.557909 0.69279 64 0.3572502 0.49396981 0.5261553 0.558341 0.69506 65 0.3545874 0.49346241 0.5261553 0.558848 0.69772 66 0.3515435 0.49288238 0.5261553 0.559428 0.70077 67 0.3482098 0.49224713 0.5261553 0.560063 0.70410 68 0.3447026 0.49157882 0.5261553 0.560732 0.70761 69 0.3265062 0.47651151 0.5118246 0.547138 0.69714 70 0.2579257 0.41132297 0.4474346 0.483546 0.63694 71 0.2081857 0.36515737 0.4021105 0.439064 0.59604 72 0.1349572 0.29569526 0.3335350 0.371375 0.53211 73 0.0020438 0.16674762 0.2055209 0.244294 0.40900 74 -0.0243664 0.14460810 0.1843868 0.224166 0.39314 75 -0.0362635 0.13720915 0.1780468 0.218884 0.39236 76 -0.0421115 0.13609478 0.1780468 0.219999 0.39820 77 -0.0482083 0.13493301 0.1780468 0.221161 0.40430 78 -0.0546034 0.13371440 0.1780468 0.222379 0.41070 79 -0.0610386 0.13248816 0.1780468 0.223605 0.41713 80 -0.0674722 0.13126221 0.1780468 0.224831 0.42357 81 -0.0740291 0.13001276 0.1780468 0.226081 0.43012 82 -0.0809567 0.12869267 0.1780468 0.227401 0.43705 83 -0.0885308 0.12724941 0.1780468 0.228844 0.44462 84 -0.0966886 0.12569491 0.1780468 0.230399 0.45278 85 -0.1053882 0.12403716 0.1780468 0.232056 0.46148 86 -0.1147206 0.12225885 0.1780468 0.233835 0.47081 87 -0.1248842 0.12032213 0.1780468 0.235771 0.48098 88 -0.1360096 0.11820215 0.1780468 0.237891 0.49210 89 -0.1480747 0.11590310 0.1780468 0.240190 0.50417 90 -0.1611528 0.11337745 0.1780053 0.242633 0.51716 91 -0.1772967 0.10838384 0.1756366 0.242889 0.52857 92 -0.1976403 0.09964452 0.1696291 0.239614 0.53690 93 -0.2221958 0.08715720 0.1599828 0.232808 0.54216 94 -0.2510614 0.07090314 0.1466976 0.222492 0.54446 95 -0.2844042 0.05085051 0.1297736 0.208697 0.54395 96 -0.3224450 0.02695723 0.1092109 0.191465 0.54087 97 -0.3654434 -0.00082617 0.0850093 0.170845 0.53546 98 -0.4136843 -0.03255395 0.0571689 0.146892 0.52802 99 -0.4674640 -0.06828261 0.0256897 0.119662 0.51884 100 -0.5270786 -0.10806856 -0.0094284 0.089212 0.50822 knots : [1] -2.557 -1.812 -1.726 -1.384 -1.233 -1.082 -1.046 -1.009 -0.932 -0.902 [11] -0.877 -0.838 -0.813 -0.765 -0.707 -0.665 -0.568 -0.498 -0.460 -0.413 [21] -0.347 -0.333 -0.299 -0.274 -0.226 -0.089 -0.024 -0.011 0.063 0.094 [31] 0.118 0.136 0.231 0.285 0.328 0.392 0.460 0.473 0.517 0.551 [41] 0.602 0.623 0.692 0.715 0.742 0.787 0.812 0.892 0.934 0.988 [51] 1.070 1.162 1.178 1.276 1.402 1.655 1.877 1.988 2.047 2.573 coef : [1] 12.6970155 7.6878537 6.0937652 4.3540061 3.7259911 3.7259911 [7] 2.7408131 2.5727608 2.5727608 2.2478639 2.2414864 2.2414864 [13] 2.2414864 2.2414864 2.2414864 1.9875889 1.6964374 1.6964374 [19] 1.6623718 1.6623718 1.3410049 1.3410049 1.3410049 1.3410049 [25] 1.3410049 1.3410049 1.1954094 1.1954094 1.1954094 1.1954094 [31] 0.9829296 0.8091342 0.7815933 0.7815933 0.7815933 0.5747526 [37] 0.5747526 0.5747526 0.5747526 0.5747526 0.5261553 0.5261553 [43] 0.5261553 0.5261553 0.5261553 0.5261553 0.5261553 0.5261553 [49] 0.5261553 0.5261553 0.4273578 0.3741431 0.2060752 0.1780468 [55] 0.1780468 0.1780468 0.1780468 0.1780468 0.1780468 0.1780468 [61] -0.0094285 432.6957871 > 1 - sum(cxy3 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.36% [1] 0.96502 > showProc.time() Time (user system elapsed): 0.26 0.015 0.277 > > cpuTime(cxy4 <- cobs(x,y, "decrease", lambda = 1e-6, nknots = 100))# ~ 3 sec. Time elapsed: 0.281 > 1 - sum(cxy4 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.443% [1] 0.96603 > > cpuTime(cxy5 <- cobs(x,y, "decrease", lambda = 1e-6, nknots = 150))# ~ 8.7 sec. Time elapsed: 0.273 > 1 - sum(cxy5 $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 98.4396% [1] 0.96835 > showProc.time() Time (user system elapsed): 0.575 0.008 2.819 > > > ## regularly spaced x : > X <- seq(-1,1, len = 201) > xx <- c(seq(-1.1, -1, len = 11), X, + seq( 1, 1.1, len = 11)) > y <- (fx <- exp(-X)) + rt(201,4)/4 > summaryCobs(cXy <- cobs(X,y, "decrease")) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... List of 24 $ call : language cobs(x = X, y = y, constraint = "decrease") $ tau : num 0.5 $ degree : num 2 $ constraint : chr "decrease" $ ic : chr "AIC" $ pointwise : NULL $ select.knots : logi TRUE $ select.lambda: logi FALSE $ x : num [1:201] -1 -0.99 -0.98 -0.97 -0.96 -0.95 -0.94 -0.93 -0.92 -0.91 ... $ y : num [1:201] 2.67 2.77 3.46 3.14 1.79 ... $ resid : num [1:201] 0 0.125 0.84 0.555 -0.77 ... $ fitted : num [1:201] 2.67 2.64 2.62 2.59 2.56 ... $ coef : num [1:4] 2.672 1.556 0.7 0.356 $ knots : num [1:3] -1 -0.2 1 $ k0 : num 4 $ k : num 4 $ x.ps :Formal class 'matrix.csr' [package "SparseM"] with 4 slots $ SSy : num 100 $ lambda : num 0 $ icyc : int 9 $ ifl : int 1 $ pp.lambda : NULL $ pp.sic : NULL $ i.mask : NULL cb.lo ci.lo fit ci.up cb.up 1 2.46750 2.55064 2.67153 2.79242 2.87556 2 2.42251 2.50122 2.61568 2.73013 2.80884 3 2.37783 2.45240 2.56081 2.66923 2.74379 4 2.33345 2.40414 2.50694 2.60973 2.68043 5 2.28933 2.35645 2.45404 2.55164 2.61876 6 2.24548 2.30932 2.40214 2.49496 2.55879 7 2.20189 2.26274 2.35122 2.43970 2.50055 8 2.15855 2.21672 2.30129 2.38586 2.44402 9 2.11547 2.17124 2.25234 2.33344 2.38922 10 2.07265 2.12633 2.20438 2.28244 2.33611 11 2.03013 2.08199 2.15741 2.23283 2.28470 12 1.98791 2.03824 2.11142 2.18461 2.23494 13 1.94605 1.99510 2.06642 2.13775 2.18680 14 1.90459 1.95260 2.02241 2.09222 2.14023 15 1.86359 1.91078 1.97938 2.04799 2.09517 16 1.82311 1.86966 1.93734 2.00502 2.05157 17 1.78322 1.82929 1.89629 1.96328 2.00936 18 1.74397 1.78971 1.85622 1.92273 1.96847 19 1.70544 1.75096 1.81714 1.88332 1.92883 20 1.66769 1.71307 1.77904 1.84502 1.89039 21 1.63079 1.67608 1.74193 1.80779 1.85308 22 1.59478 1.64002 1.70581 1.77160 1.81684 23 1.55972 1.60493 1.67067 1.73642 1.78163 24 1.52564 1.57083 1.63653 1.70222 1.74741 25 1.49260 1.53773 1.60336 1.66899 1.71412 26 1.46062 1.50567 1.57118 1.63670 1.68175 27 1.42972 1.47466 1.53999 1.60533 1.65026 28 1.39994 1.44470 1.50979 1.57488 1.61964 29 1.37128 1.41581 1.48057 1.54533 1.58987 30 1.34375 1.38800 1.45234 1.51668 1.56093 31 1.31736 1.36126 1.42510 1.48893 1.53283 32 1.29211 1.33560 1.39884 1.46207 1.50556 33 1.26800 1.31101 1.37357 1.43612 1.47914 34 1.24500 1.28749 1.34928 1.41107 1.45356 35 1.22310 1.26502 1.32598 1.38694 1.42886 36 1.20228 1.24360 1.30367 1.36374 1.40505 37 1.18250 1.22319 1.28234 1.34150 1.38218 38 1.16372 1.20377 1.26200 1.32023 1.36028 39 1.14589 1.18532 1.24265 1.29998 1.33941 40 1.12894 1.16779 1.22428 1.28077 1.31962 41 1.11271 1.15106 1.20683 1.26259 1.30094 42 1.09639 1.13439 1.18963 1.24488 1.28287 43 1.07982 1.11760 1.17253 1.22747 1.26525 44 1.06303 1.10072 1.15553 1.21034 1.24803 45 1.04607 1.08378 1.13862 1.19346 1.23117 46 1.02898 1.06681 1.12181 1.17681 1.21463 47 1.01180 1.04982 1.10509 1.16037 1.19838 48 0.99458 1.03284 1.08847 1.14411 1.18237 49 0.97734 1.01589 1.07195 1.12801 1.16656 50 0.96011 0.99899 1.05552 1.11205 1.15092 51 0.94294 0.98216 1.03919 1.09621 1.13543 52 0.92585 0.96541 1.02295 1.08049 1.12005 53 0.90885 0.94877 1.00681 1.06485 1.10477 54 0.89197 0.93223 0.99076 1.04930 1.08956 55 0.87523 0.91581 0.97482 1.03382 1.07440 56 0.85865 0.89952 0.95896 1.01840 1.05928 57 0.84223 0.88337 0.94321 1.00304 1.04419 58 0.82598 0.86736 0.92755 0.98773 1.02911 59 0.80991 0.85150 0.91198 0.97246 1.01405 60 0.79403 0.83579 0.89651 0.95723 0.99899 61 0.77834 0.82023 0.88114 0.94205 0.98394 62 0.76284 0.80482 0.86586 0.92690 0.96888 63 0.74753 0.78956 0.85068 0.91180 0.95383 64 0.73241 0.77446 0.83559 0.89673 0.93878 65 0.71747 0.75950 0.82060 0.88171 0.92374 66 0.70271 0.74468 0.80571 0.86674 0.90871 67 0.68812 0.73001 0.79091 0.85182 0.89371 68 0.67368 0.71546 0.77621 0.83696 0.87874 69 0.65939 0.70104 0.76161 0.82217 0.86382 70 0.64523 0.68674 0.74710 0.80745 0.84896 71 0.63118 0.67254 0.73268 0.79282 0.83419 72 0.61722 0.65844 0.71836 0.77829 0.81951 73 0.60333 0.64441 0.70414 0.76388 0.80495 74 0.58948 0.63045 0.69002 0.74958 0.79055 75 0.57565 0.61654 0.67599 0.73544 0.77632 76 0.56181 0.60266 0.66205 0.72145 0.76230 77 0.54792 0.58879 0.64821 0.70764 0.74851 78 0.53395 0.57491 0.63447 0.69403 0.73500 79 0.51986 0.56100 0.62083 0.68065 0.72179 80 0.50563 0.54705 0.60728 0.66750 0.70892 81 0.49121 0.53302 0.59382 0.65462 0.69643 82 0.47657 0.51891 0.58046 0.64202 0.68435 83 0.46169 0.50468 0.56720 0.62972 0.67271 84 0.44652 0.49033 0.55403 0.61774 0.66155 85 0.43105 0.47584 0.54096 0.60609 0.65087 86 0.41526 0.46119 0.52799 0.59478 0.64072 87 0.39912 0.44638 0.51511 0.58383 0.63109 88 0.38264 0.43141 0.50233 0.57324 0.62202 89 0.36579 0.41626 0.48964 0.56302 0.61349 90 0.34858 0.40093 0.47705 0.55317 0.60552 91 0.33101 0.38542 0.46455 0.54368 0.59810 92 0.31307 0.36975 0.45215 0.53456 0.59123 93 0.29478 0.35390 0.43985 0.52580 0.58492 94 0.27615 0.33788 0.42764 0.51741 0.57914 95 0.25717 0.32170 0.41553 0.50936 0.57389 96 0.23787 0.30536 0.40352 0.50167 0.56917 97 0.21824 0.28888 0.39160 0.49431 0.56495 98 0.19830 0.27225 0.37977 0.48730 0.56125 99 0.17806 0.25547 0.36804 0.48062 0.55803 100 0.15752 0.23857 0.35641 0.47426 0.55531 knots : [1] -1.0 -0.2 1.0 coef : [1] 2.67153 1.55592 0.70045 0.35641 > 1 - sum(cXy $ resid ^ 2) / sum((y - mean(y))^2) # R^2 = 77.2% [1] 0.77644 > showProc.time() Time (user system elapsed): 0.169 0.003 0.174 > > (cXy.9 <- cobs(X,y, "decrease", tau = 0.9)) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.9) {tau=0.9}-quantile; dimensionality of fit: 6 from {6} x$knots[1:5]: -1.0, -0.6, -0.2, 0.2, 1.0 > (cXy.1 <- cobs(X,y, "decrease", tau = 0.1)) qbsks2(): Performing general knot selection ... WARNING! Since the number of 6 knots selected by AIC reached the upper bound during general knot selection, you might want to rerun cobs with a larger number of knots. Deleting unnecessary knots ... WARNING! Since the number of 6 knots selected by AIC reached the upper bound during general knot selection, you might want to rerun cobs with a larger number of knots. COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.1) {tau=0.1}-quantile; dimensionality of fit: 4 from {4} x$knots[1:3]: -1.0, 0.6, 1.0 > (cXy.99<- cobs(X,y, "decrease", tau = 0.99)) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.99) {tau=0.99}-quantile; dimensionality of fit: 4 from {4} x$knots[1:3]: -1.0, -0.2, 1.0 > (cXy.01<- cobs(X,y, "decrease", tau = 0.01)) qbsks2(): Performing general knot selection ... Deleting unnecessary knots ... COBS regression spline (degree = 2) from call: cobs(x = X, y = y, constraint = "decrease", tau = 0.01) {tau=0.01}-quantile; dimensionality of fit: 6 from {6} x$knots[1:5]: -1.0, -0.6, -0.2, 0.2, 1.0 > plot(X,y, xlim = range(xx), + main = "cobs(*, \"decrease\"), N=201, tau = 50% (Med.), 1,10, 90,99%") > lines(predict(cXy, xx), col = 2) > lines(predict(cXy.1, xx), col = 3) > lines(predict(cXy.9, xx), col = 3) > lines(predict(cXy.01, xx), col = 4) > lines(predict(cXy.99, xx), col = 4) > > showProc.time() Time (user system elapsed): 0.81 0.001 0.979 > > ## Interpolation > cpuTime(cXyI <- cobs(X,y, "decrease", knots = unique(X))) qbsks2(): Performing general knot selection ... Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cpuTime ... cobs -> qbsks2 -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% In addition: Warning message: In cobs(X, y, "decrease", knots = unique(X)) : The number of knots can't be equal to the number of unique x for degree = 2. 'cobs' has automatically deleted the middle knot. Timing stopped at: 1.843 0.024 7.219 Execution halted Running the tests in ‘tests/roof.R’ failed. Complete output: > suppressMessages(library(cobs)) > > data(USArmyRoofs) > attach(USArmyRoofs)#-> "age" and "fci" > > if(!dev.interactive(orNone=TRUE)) pdf("roof.pdf", width=10) > > ## Compute the quadratic median smoothing B-spline with SIC > ## chosen lambda > a50 <- cobs(age,fci,constraint = "decrease",lambda = -1,nknots = 10, + degree = 2,pointwise = rbind(c(0,0,100)), + trace = 2)# trace > 1 : more tracing Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. fieq=TRUE -> Tnobs = 184, n0 = 29, |ptConstr| = 2 Error in drqssbc2(x, y, w, pw = pw, knots = knots, degree = degree, Tlambda = if (select.lambda) lambdaSet else lambda, : The problem is degenerate for the range of lambda specified. Calls: cobs -> drqssbc2 In addition: Warning message: In min(sol1["k", i.keep]) : no non-missing arguments to min; returning Inf Execution halted Running the tests in ‘tests/wind.R’ failed. Complete output: > suppressMessages(library(cobs)) > > source(system.file("util.R", package = "cobs")) > (doExtra <- doExtras()) [1] FALSE > source(system.file("test-tools-1.R", package="Matrix", mustWork=TRUE)) Loading required package: tools > showProc.time() # timing here (to be faster by default) Time (user system elapsed): 0.001 0.002 0.032 > > data(DublinWind) > attach(DublinWind)##-> speed & day (instead of "wind.x" & "DUB.") > iday <- sort.list(day) > > if(!dev.interactive(orNone=TRUE)) pdf("wind.pdf", width=10) > > stopifnot(identical(day,c(rep(c(rep(1:365,3),1:366),4), + rep(1:365,2)))) > co50.1 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 1) > co50.2 <- cobs(day, speed, constraint= "periodic", tau= .5, lambda= 2.2, + degree = 2) > > showProc.time() Time (user system elapsed): 0.722 0.048 2.589 > > plot(day,speed, pch = ".", col = "gray20") > lines(day[iday], fitted(co50.1)[iday], col="orange", lwd = 2) > lines(day[iday], fitted(co50.2)[iday], col="sky blue", lwd = 2) > rug(knots(co50.1), col=3, lwd=2) > > nknots <- 13 > > > if(doExtra) { + ## Compute the quadratic median smoothing B-spline using SIC + ## lambda selection + co.o50 <- + cobs(day, speed, knots.add = TRUE, constraint="periodic", nknots = nknots, + tau = .5, lambda = -1, method = "uniform") + summary(co.o50) # [does print] + + showProc.time() + + op <- par(mfrow = c(3,1), mgp = c(1.5, 0.6,0), mar=.1 + c(3,3:1)) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", + col=2, log = "x", main = "co.o50: periodic")) + with(co.o50, plot(pp.sic ~ pp.lambda, type ="o", ylim = robrng(pp.sic), + col=2, log = "x", main = "co.o50: periodic")) + of <- 0.64430538125795 + with(co.o50, plot(pp.sic - of ~ pp.lambda, type ="o", ylim = c(6e-15, 8e-15), + ylab = paste("sic -",formatC(of, dig=14, small.m = "'")), + col=2, log = "x", main = "co.o50: periodic")) + par(op) + } > > showProc.time() Time (user system elapsed): 0.049 0.003 0.144 > > ## cobs99: Since SIC chooses a lambda that corresponds to the smoothest > ## possible fit, rerun cobs with a larger lstart value > ## (lstart <- log(.Machine$double.xmax)^3) # 3.57 e9 > ## > co.o50. <- + cobs(day,speed, knots.add = TRUE, constraint = "periodic", nknots = 10, + tau = .5, lambda = -1, method = "quantile") Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. The algorithm has converged. You might plot() the returned object (which plots 'sic' against 'lambda') to see if you have found the global minimum of the information criterion so that you can determine if you need to adjust any or all of 'lambda.lo', 'lambda.hi' and 'lambda.length' and refit the model. > summary(co.o50.) COBS smoothing spline (degree = 2) from call: cobs(x = day, y = speed, constraint = "periodic", nknots = 10, method = "quantile", tau = 0.5, lambda = -1, knots.add = TRUE) {tau=0.5}-quantile; dimensionality of fit: 7 from {14,13,11,8,7,30} x$knots[1:10]: 0.999635, 41.000000, 82.000000, ... , 366.000365 lambda = 101002.6, selected via SIC, out of 25 ones. coef[1:12]: 1.121550e+01, 1.139573e+01, 1.089025e+01, 9.954427e+00, 8.148158e+00, ... , 5.373106e-04 R^2 = 8.22% ; empirical tau (over all): 3287/6574 = 0.5 (target tau= 0.5) > summary(pc.5 <- predict(co.o50., interval = "both")) z fit cb.lo cb.up Min. : 0.9996 Min. : 7.212 Min. : 6.351 Min. : 7.951 1st Qu.: 92.2498 1st Qu.: 7.790 1st Qu.: 7.000 1st Qu.: 8.600 Median :183.5000 Median : 9.436 Median : 8.555 Median :10.326 Mean :183.5000 Mean : 9.314 Mean : 8.388 Mean :10.241 3rd Qu.:274.7502 3rd Qu.:10.798 3rd Qu.: 9.716 3rd Qu.:11.787 Max. :366.0004 Max. :11.290 Max. :10.347 Max. :13.416 ci.lo ci.up Min. : 6.782 Min. : 7.598 1st Qu.: 7.370 1st Qu.: 8.213 Median : 8.974 Median : 9.901 Mean : 8.830 Mean : 9.798 3rd Qu.:10.197 3rd Qu.:11.311 Max. :10.797 Max. :12.366 > > showProc.time() Time (user system elapsed): 2.897 0.029 5.435 > > if(doExtra) { ## + repeat.delete.add + co.o50.. <- cobs(day,speed, knots.add = TRUE, repeat.delete.add=TRUE, + constraint = "periodic", nknots = 10, + tau = .5, lambda = -1, method = "quantile") + summary(co.o50..) + showProc.time() + } > > co.o9 <- ## Compute the .9 quantile smoothing B-spline + cobs(day,speed,knots.add = TRUE, constraint = "periodic", nknots = 10, + tau = .9,lambda = -1, method = "uniform") Searching for optimal lambda. This may take a while. While you are waiting, here is something you can consider to speed up the process: (a) Use a smaller number of knots; (b) Set lambda==0 to exclude the penalty term; (c) Use a coarser grid by reducing the argument 'lambda.length' from the default value of 25. Error in x %*% coefficients : NA/NaN/Inf in foreign function call (arg 2) Calls: cobs -> drqssbc2 -> rq.fit.sfnc -> %*% -> %*% Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Package copula

Current CRAN status: ERROR: 2, NOTE: 6, OK: 5

Version: 1.1-4
Check: re-building of vignette outputs
Result: WARN Error(s) in re-building vignettes: --- re-building ‘AC_Liouville.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/AC_Liouville_files/figure-html/pairs-rACsimp-1.png 288x288 pixels, 8 bits/pixel, 196 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 7776 bytes Input file size = 8454 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 6976 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 6976 Output IDAT size = 6976 bytes (800 bytes decrease) Output file size = 7054 bytes (1400 bytes = 16.56% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/AC_Liouville_files/figure-html/pairs-Liouville-1.png 288x288 pixels, 8 bits/pixel, 198 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 7699 bytes Input file size = 8383 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 6969 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 6969 Output IDAT size = 6969 bytes (730 bytes decrease) Output file size = 7047 bytes (1336 bytes = 15.94% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/AC_Liouville_files/figure-html/pairs-ACLiou-1.png 288x288 pixels, 8 bits/pixel, 199 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 7802 bytes Input file size = 8489 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 7033 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 7033 Output IDAT size = 7033 bytes (769 bytes decrease) Output file size = 7111 bytes (1378 bytes = 16.23% decrease) --- finished re-building ‘AC_Liouville.Rmd’ --- re-building ‘AR_Clayton.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/AR_Clayton_files/figure-html/unnamed-chunk-7-1.png 576x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 58750 bytes Input file size = 58912 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 50100 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 50100 Output IDAT size = 50100 bytes (8650 bytes decrease) Output file size = 50178 bytes (8734 bytes = 14.83% decrease) --- finished re-building ‘AR_Clayton.Rmd’ --- re-building ‘GIG.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/GIG_files/figure-html/unnamed-chunk-4-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 30633 bytes Input file size = 30747 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 26518 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 26518 Output IDAT size = 26518 bytes (4115 bytes decrease) Output file size = 26596 bytes (4151 bytes = 13.50% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/GIG_files/figure-html/unnamed-chunk-6-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 371877 bytes Input file size = 372495 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 277143 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 277143 Output IDAT size = 277143 bytes (94734 bytes decrease) Output file size = 277221 bytes (95274 bytes = 25.58% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/GIG_files/figure-html/unnamed-chunk-10-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 95974 bytes Input file size = 96184 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 77702 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 77702 Output IDAT size = 77702 bytes (18272 bytes decrease) Output file size = 77780 bytes (18404 bytes = 19.13% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/GIG_files/figure-html/unnamed-chunk-11-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 52469 bytes Input file size = 52619 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 46680 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 46680 Output IDAT size = 46680 bytes (5789 bytes decrease) Output file size = 46758 bytes (5861 bytes = 11.14% decrease) --- finished re-building ‘GIG.Rmd’ --- re-building ‘HAXC.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-5-1.png 288x288 pixels, 8 bits/pixel, 204 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10349 bytes Input file size = 11063 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9726 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9726 Output IDAT size = 9726 bytes (623 bytes decrease) Output file size = 9804 bytes (1259 bytes = 11.38% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-6-1.png 288x288 pixels, 8 bits/pixel, 203 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 9063 bytes Input file size = 9774 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 8364 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 8364 Output IDAT size = 8364 bytes (699 bytes decrease) Output file size = 8442 bytes (1332 bytes = 13.63% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-7-1.png 288x288 pixels, 8 bits/pixel, 203 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10512 bytes Input file size = 11223 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9784 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9783 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9783 Output IDAT size = 9783 bytes (729 bytes decrease) Output file size = 9861 bytes (1362 bytes = 12.14% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-8-1.png 288x288 pixels, 8 bits/pixel, 207 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 9924 bytes Input file size = 10647 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9203 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9203 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9203 Output IDAT size = 9203 bytes (721 bytes decrease) Output file size = 9281 bytes (1366 bytes = 12.83% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-9-1.png 288x288 pixels, 8 bits/pixel, 205 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 9679 bytes Input file size = 10396 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9018 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9007 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9007 Output IDAT size = 9007 bytes (672 bytes decrease) Output file size = 9085 bytes (1311 bytes = 12.61% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-10-1.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10157 bytes Input file size = 10877 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9400 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9391 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9391 Output IDAT size = 9391 bytes (766 bytes decrease) Output file size = 9469 bytes (1408 bytes = 12.94% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-11-1.png 288x288 pixels, 8 bits/pixel, 202 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10828 bytes Input file size = 11536 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 10091 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 10074 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 10074 Output IDAT size = 10074 bytes (754 bytes decrease) Output file size = 10152 bytes (1384 bytes = 12.00% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-12-1.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10954 bytes Input file size = 11674 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 10178 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 10174 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 10174 Output IDAT size = 10174 bytes (780 bytes decrease) Output file size = 10252 bytes (1422 bytes = 12.18% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-13-1.png 288x288 pixels, 8 bits/pixel, 207 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10163 bytes Input file size = 10886 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9466 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9466 Output IDAT size = 9466 bytes (697 bytes decrease) Output file size = 9544 bytes (1342 bytes = 12.33% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-14-1.png 288x288 pixels, 8 bits/pixel, 203 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10181 bytes Input file size = 10892 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9492 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9476 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9476 Output IDAT size = 9476 bytes (705 bytes decrease) Output file size = 9554 bytes (1338 bytes = 12.28% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-15-1.png 288x288 pixels, 8 bits/pixel, 205 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 9679 bytes Input file size = 10396 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9018 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9007 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9007 Output IDAT size = 9007 bytes (672 bytes decrease) Output file size = 9085 bytes (1311 bytes = 12.61% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-16-1.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10157 bytes Input file size = 10877 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9400 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9391 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9391 Output IDAT size = 9391 bytes (766 bytes decrease) Output file size = 9469 bytes (1408 bytes = 12.94% decrease) --- finished re-building ‘HAXC.Rmd’ --- re-building ‘NALC.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/NALC_files/figure-html/unnamed-chunk-12-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 48687 bytes Input file size = 48825 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 47679 zc = 9 zm = 8 zs = 1 f = 5 IDAT size = 47159 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 5 IDAT size = 47159 Output IDAT size = 47159 bytes (1528 bytes decrease) Output file size = 47237 bytes (1588 bytes = 3.25% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/NALC_files/figure-html/unnamed-chunk-12-2.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 31122 bytes Input file size = 31236 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 28096 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 28096 Output IDAT size = 28096 bytes (3026 bytes decrease) Output file size = 28174 bytes (3062 bytes = 9.80% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/NALC_files/figure-html/unnamed-chunk-13-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 34828 bytes Input file size = 34954 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 32747 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 32747 Output IDAT size = 32747 bytes (2081 bytes decrease) Output file size = 32825 bytes (2129 bytes = 6.09% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/NALC_files/figure-html/unnamed-chunk-13-2.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 35630 bytes Input file size = 35756 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 32399 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 32399 Output IDAT size = 32399 bytes (3231 bytes decrease) Output file size = 32477 bytes (3279 bytes = 9.17% decrease) --- finished re-building ‘NALC.Rmd’ --- re-building ‘copula_GARCH.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/copula_GARCH_files/figure-html/unnamed-chunk-3-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 62204 bytes Input file size = 62366 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 59134 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 59134 Output IDAT size = 59134 bytes (3070 bytes decrease) Output file size = 59212 bytes (3154 bytes = 5.06% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/copula_GARCH_files/figure-html/unnamed-chunk-5-1.png 576x576 pixels, 8 bits/pixel, 256 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 20748 bytes Input file size = 21630 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 19100 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 18890 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 18890 Output IDAT size = 18890 bytes (1858 bytes decrease) Output file size = 18968 bytes (2662 bytes = 12.31% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/copula_GARCH_files/figure-html/unnamed-chunk-7-1.png 576x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 61628 bytes Input file size = 61790 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 60748 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 58413 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 58413 Output IDAT size = 58413 bytes (3215 bytes decrease) Output file size = 58491 bytes (3299 bytes = 5.34% decrease) --- finished re-building ‘copula_GARCH.Rmd’ --- re-building ‘dNAC.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/dNAC_files/figure-html/wire+level-1.png 288x288 pixels, 8 bits/pixel, 255 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 17088 bytes Input file size = 17967 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 15997 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 15724 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 15724 Output IDAT size = 15724 bytes (1364 bytes decrease) Output file size = 15802 bytes (2165 bytes = 12.05% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/dNAC_files/figure-html/wire+level-2.png 288x288 pixels, 8 bits/pixel, 255 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 12058 bytes Input file size = 12925 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 11518 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 11518 Output IDAT size = 11518 bytes (540 bytes decrease) Output file size = 11596 bytes (1329 bytes = 10.28% decrease) --- finished re-building ‘dNAC.Rmd’ --- re-building ‘empiricial_copulas.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/plot-margins-1.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 3976 bytes Input file size = 4684 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3502 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3502 Output IDAT size = 3502 bytes (474 bytes decrease) Output file size = 3580 bytes (1104 bytes = 23.57% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/plot-margins-2.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 3877 bytes Input file size = 4585 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3418 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3418 Output IDAT size = 3418 bytes (459 bytes decrease) Output file size = 3496 bytes (1089 bytes = 23.75% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/plot-margins-3.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 3940 bytes Input file size = 4648 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3449 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3449 Output IDAT size = 3449 bytes (491 bytes decrease) Output file size = 3527 bytes (1121 bytes = 24.12% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/plot-margins-4.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 3883 bytes Input file size = 4591 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3406 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3406 Output IDAT size = 3406 bytes (477 bytes decrease) Output file size = 3484 bytes (1107 bytes = 24.11% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/plot-mass-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 10251 bytes Input file size = 10341 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 7064 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 7064 Output IDAT size = 7064 bytes (3187 bytes decrease) Output file size = 7142 bytes (3199 bytes = 30.94% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/plot-mass-2.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 7637 bytes Input file size = 7715 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 6019 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 6019 Output IDAT size = 6019 bytes (1618 bytes decrease) Output file size = 6097 bytes (1618 bytes = 20.97% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/wireframes-1.png 288x288 pixels, 8 bits/pixel, 219 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 17773 bytes Input file size = 18544 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 16959 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 16959 Output IDAT size = 16959 bytes (814 bytes decrease) Output file size = 17037 bytes (1507 bytes = 8.13% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/wireframes-2.png 288x288 pixels, 8 bits/pixel, 220 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 17712 bytes Input file size = 18486 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 16901 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 16901 Output IDAT size = 16901 bytes (811 bytes decrease) Output file size = 16979 bytes (1507 bytes = 8.15% decrease) --- finished re-building ‘empiricial_copulas.Rmd’ --- re-building ‘logL_visualization.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/logL_visualization_files/figure-html/unnamed-chunk-6-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 31975 bytes Input file size = 32089 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 26245 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 26245 Output IDAT size = 26245 bytes (5730 bytes decrease) Output file size = 26323 bytes (5766 bytes = 17.97% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/logL_visualization_files/figure-html/unnamed-chunk-8-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 28591 bytes Input file size = 28705 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 24027 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 24027 Output IDAT size = 24027 bytes (4564 bytes decrease) Output file size = 24105 bytes (4600 bytes = 16.03% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/logL_visualization_files/figure-html/unnamed-chunk-11-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 31104 bytes Input file size = 31218 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 24067 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 24067 Output IDAT size = 24067 bytes (7037 bytes decrease) Output file size = 24145 bytes (7073 bytes = 22.66% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/logL_visualization_files/figure-html/unnamed-chunk-15-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 31402 bytes Input file size = 31516 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 25526 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 25526 Output IDAT size = 25526 bytes (5876 bytes decrease) Output file size = 25604 bytes (5912 bytes = 18.76% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/logL_visualization_files/figure-html/unnamed-chunk-19-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 28772 bytes Input file size = 28886 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 22690 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 22690 Output IDAT size = 22690 bytes (6082 bytes decrease) Output file size = 22768 bytes (6118 bytes = 21.18% decrease) --- finished re-building ‘logL_visualization.Rmd’ --- re-building ‘qrng.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/indep-copula-1.png 576x288 pixels, 8 bits/pixel, 232 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 37006 bytes Input file size = 37840 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 34692 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 34170 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 34170 Output IDAT size = 34170 bytes (2836 bytes decrease) Output file size = 34248 bytes (3592 bytes = 9.49% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/plot-clayton-1.png 576x288 pixels, 8 bits/pixel, 192 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 5788 bytes Input file size = 6454 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 4981 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 4981 Output IDAT size = 4981 bytes (807 bytes decrease) Output file size = 5059 bytes (1395 bytes = 21.61% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/t-Cop-fig-1.png 576x288 pixels, 8 bits/pixel, 199 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 5920 bytes Input file size = 6607 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 5040 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 5040 Output IDAT size = 5040 bytes (880 bytes decrease) Output file size = 5118 bytes (1489 bytes = 22.54% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/plot-MO-1.png 576x288 pixels, 8 bits/pixel, 194 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 5831 bytes Input file size = 6503 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 5066 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 5066 Output IDAT size = 5066 bytes (765 bytes decrease) Output file size = 5144 bytes (1359 bytes = 20.90% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/plot-t3d-1.png 288x288 pixels, 8 bits/pixel, 256 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 29019 bytes Input file size = 29913 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 27790 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 27581 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 27581 Output IDAT size = 27581 bytes (1438 bytes decrease) Output file size = 27659 bytes (2254 bytes = 7.54% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/pl-q-t3d-1.png 288x288 pixels, 8 bits/pixel, 256 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 29925 bytes Input file size = 30819 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 28713 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 28521 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 28521 Output IDAT size = 28521 bytes (1404 bytes decrease) Output file size = 28599 bytes (2220 bytes = 7.20% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/clouds.t3d-1.png 576x288 pixels, 8 bits/pixel, 256 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 23769 bytes Input file size = 24651 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 22605 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 22351 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 22351 Output IDAT size = 22351 bytes (1418 bytes decrease) Output file size = 22429 bytes (2222 bytes = 9.01% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/pl.col-CMD-1.png 576x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 63931 bytes Input file size = 64093 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 41402 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 41402 Output IDAT size = 41402 bytes (22529 bytes decrease) Output file size = 41480 bytes (22613 bytes = 35.28% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/pl.col-MO-1.png 576x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 51058 bytes Input file size = 51208 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 41141 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 41141 Output IDAT size = 41141 bytes (9917 bytes decrease) Output file size = 41219 bytes (9989 bytes = 19.51% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/plot-sim-1.png 336x336 pixels, 3x8 bits/pixel, RGB Input IDAT size = 25556 bytes Input file size = 25670 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 17946 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 17946 Output IDAT size = 17946 bytes (7610 bytes decrease) Output file size = 18024 bytes (7646 bytes = 29.79% decrease) --- finished re-building ‘qrng.Rmd’ --- re-building ‘wild_animals.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/unnamed-chunk-1-1.png 288x288 pixels, 8 bits/pixel, 233 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 2808 bytes Input file size = 3597 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 2480 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 2480 Output IDAT size = 2480 bytes (328 bytes decrease) Output file size = 2558 bytes (1039 bytes = 28.89% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/unnamed-chunk-1-2.png 288x288 pixels, 8 bits/pixel, 243 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 2807 bytes Input file size = 3626 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 2468 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 2468 Output IDAT size = 2468 bytes (339 bytes decrease) Output file size = 2546 bytes (1080 bytes = 29.78% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/unnamed-chunk-1-3.png 288x288 pixels, 8 bits/pixel, 192 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 5186 bytes Input file size = 5852 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 4606 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 4606 Output IDAT size = 4606 bytes (580 bytes decrease) Output file size = 4684 bytes (1168 bytes = 19.96% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/unnamed-chunk-2-1.png 288x288 pixels, 8 bits/pixel, 248 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 14931 bytes Input file size = 15777 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 14036 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 13451 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 13451 Output IDAT size = 13451 bytes (1480 bytes decrease) Output file size = 13529 bytes (2248 bytes = 14.25% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/plot.margins-1.png 288x288 pixels, 8 bits/pixel, 249 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 3365 bytes Input file size = 4202 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3147 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3147 Output IDAT size = 3147 bytes (218 bytes decrease) Output file size = 3225 bytes (977 bytes = 23.25% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/plot.U-1.png 288x288 pixels, 8 bits/pixel, 192 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 4475 bytes Input file size = 5141 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3998 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3998 Output IDAT size = 3998 bytes (477 bytes decrease) Output file size = 4076 bytes (1065 bytes = 20.72% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/splom.U-1.png 288x288 pixels, 8 bits/pixel, 256 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 30756 bytes Input file size = 31650 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 30404 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 29440 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 29440 Output IDAT size = 29440 bytes (1316 bytes decrease) Output file size = 29518 bytes (2132 bytes = 6.74% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-clang/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/cloud.U-1.png 288x288 pixels, 8 bits/pixel, 256 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 20411 bytes Input file size = 21293 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 19454 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 19168 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 19168 Output IDAT size = 19168 bytes (1243 bytes decrease) Output file size = 19246 bytes (2047 bytes = 9.61% decrease) --- finished re-building ‘wild_animals.Rmd’ --- re-building ‘Frank-Rmpfr.Rnw’ using Sweave Loading required package: copula Loading required package: Rmpfr Loading required package: gmp Attaching package: 'gmp' The following objects are masked from 'package:copula': Eulerian, Eulerian.all, Stirling1, Stirling1.all, Stirling2, Stirling2.all The following objects are masked from 'package:base': %*%, apply, crossprod, matrix, tcrossprod C code of R package 'Rmpfr': GMP using 64 bits per limb Attaching package: 'Rmpfr' The following object is masked from 'package:gmp': outer The following objects are masked from 'package:copula': Bernoulli, log1mexp, log1pexp The following objects are masked from 'package:stats': dbinom, dgamma, dnbinom, dnorm, dpois, dt, pnorm The following objects are masked from 'package:base': cbind, pmax, pmin, rbind --- finished re-building ‘Frank-Rmpfr.Rnw’ --- re-building ‘nacopula-pkg.Rnw’ using Sweave Loading required package: copula Loading required package: lattice Warning in pnacopula(C3joe.5, c(0.5, 0.5, 0.5)) : 'pnacopula' is deprecated. Use 'pCopula' instead. See help("Deprecated") Warning in pnacopula(C3joe.5, c(0.99, 0.99, 0.99)) : 'pnacopula' is deprecated. Use 'pCopula' instead. See help("Deprecated") Warning in pnacopula(C_9_clayton, rep(0.5, 9)) : 'pnacopula' is deprecated. Use 'pCopula' instead. See help("Deprecated") Warning in pnacopula(C_9_clayton, rep(0.99, 9)) : 'pnacopula' is deprecated. Use 'pCopula' instead. See help("Deprecated") --- finished re-building ‘nacopula-pkg.Rnw’ Warning: elapsed-time limit of 1 hours reached for sub-process --- re-building ‘rhoAMH-dilog.Rnw’ using Sweave Loading required package: copula Loading required package: sfsmisc Warning in xy.coords(x, y, xlabel, ylabel, log) : 190 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 2364 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 1509 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log) : 36 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 2364 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 6323 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 7933 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 24289 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log) : 148 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 2364 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 6323 y values <= 0 omitted from logarithmic plot Error: processing vignette 'rhoAMH-dilog.Rnw' failed with diagnostics: Running 'texi2dvi' on 'rhoAMH-dilog.tex' failed. LaTeX errors: ! Interruption. \GenericError ...@ \else 6\fi \endcsname \protect \GenericError l.279 \end{align} ! Emergency stop. \GenericError ...@ \else 6\fi \endcsname \protect \GenericError l.279 \end{align} ! ==> Fatal error occurred, no output PDF file produced! --- failed re-building ‘rhoAMH-dilog.Rnw’ SUMMARY: processing the following file failed: ‘rhoAMH-dilog.Rnw’ Error: Vignette re-building failed. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.1-4
Check: PDF version of manual
Result: WARN LaTeX errors when creating PDF version. This typically indicates Rd problems. LaTeX errors found: ! TeX capacity exceeded, sorry [input stack size=10000]. \@latex@warning #1->\GenericWarning {\space \space \space \@spaces \@spaces ... l.10796 \eqn{s \in \{0,-1,\dots\}}{} ! ==> Fatal error occurred, no output PDF file produced! Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 1.1-4
Check: PDF version of manual without index
Result: ERROR
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 1.1-4
Check: for non-standard things in the check directory
Result: NOTE Found the following files/directories: ‘copula-manual.tex’ Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 1.1-4
Check: re-building of vignette outputs
Result: WARN Error(s) in re-building vignettes: --- re-building ‘AC_Liouville.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/AC_Liouville_files/figure-html/pairs-rACsimp-1.png 288x288 pixels, 8 bits/pixel, 196 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 7776 bytes Input file size = 8454 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 6976 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 6976 Output IDAT size = 6976 bytes (800 bytes decrease) Output file size = 7054 bytes (1400 bytes = 16.56% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/AC_Liouville_files/figure-html/pairs-Liouville-1.png 288x288 pixels, 8 bits/pixel, 198 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 7699 bytes Input file size = 8383 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 6969 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 6969 Output IDAT size = 6969 bytes (730 bytes decrease) Output file size = 7047 bytes (1336 bytes = 15.94% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/AC_Liouville_files/figure-html/pairs-ACLiou-1.png 288x288 pixels, 8 bits/pixel, 199 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 7802 bytes Input file size = 8489 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 7033 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 7033 Output IDAT size = 7033 bytes (769 bytes decrease) Output file size = 7111 bytes (1378 bytes = 16.23% decrease) --- finished re-building ‘AC_Liouville.Rmd’ --- re-building ‘AR_Clayton.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/AR_Clayton_files/figure-html/unnamed-chunk-7-1.png 576x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 58750 bytes Input file size = 58912 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 50100 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 50100 Output IDAT size = 50100 bytes (8650 bytes decrease) Output file size = 50178 bytes (8734 bytes = 14.83% decrease) --- finished re-building ‘AR_Clayton.Rmd’ --- re-building ‘GIG.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/GIG_files/figure-html/unnamed-chunk-4-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 30633 bytes Input file size = 30747 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 26518 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 26518 Output IDAT size = 26518 bytes (4115 bytes decrease) Output file size = 26596 bytes (4151 bytes = 13.50% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/GIG_files/figure-html/unnamed-chunk-6-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 371877 bytes Input file size = 372495 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 277143 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 277143 Output IDAT size = 277143 bytes (94734 bytes decrease) Output file size = 277221 bytes (95274 bytes = 25.58% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/GIG_files/figure-html/unnamed-chunk-10-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 95974 bytes Input file size = 96184 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 77702 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 77702 Output IDAT size = 77702 bytes (18272 bytes decrease) Output file size = 77780 bytes (18404 bytes = 19.13% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/GIG_files/figure-html/unnamed-chunk-11-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 52469 bytes Input file size = 52619 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 46680 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 46680 Output IDAT size = 46680 bytes (5789 bytes decrease) Output file size = 46758 bytes (5861 bytes = 11.14% decrease) --- finished re-building ‘GIG.Rmd’ --- re-building ‘HAXC.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-5-1.png 288x288 pixels, 8 bits/pixel, 204 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10349 bytes Input file size = 11063 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9726 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9726 Output IDAT size = 9726 bytes (623 bytes decrease) Output file size = 9804 bytes (1259 bytes = 11.38% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-6-1.png 288x288 pixels, 8 bits/pixel, 203 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 9063 bytes Input file size = 9774 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 8364 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 8364 Output IDAT size = 8364 bytes (699 bytes decrease) Output file size = 8442 bytes (1332 bytes = 13.63% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-7-1.png 288x288 pixels, 8 bits/pixel, 203 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10512 bytes Input file size = 11223 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9784 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9783 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9783 Output IDAT size = 9783 bytes (729 bytes decrease) Output file size = 9861 bytes (1362 bytes = 12.14% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-8-1.png 288x288 pixels, 8 bits/pixel, 207 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 9924 bytes Input file size = 10647 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9203 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9203 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9203 Output IDAT size = 9203 bytes (721 bytes decrease) Output file size = 9281 bytes (1366 bytes = 12.83% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-9-1.png 288x288 pixels, 8 bits/pixel, 205 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 9679 bytes Input file size = 10396 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9018 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9007 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9007 Output IDAT size = 9007 bytes (672 bytes decrease) Output file size = 9085 bytes (1311 bytes = 12.61% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-10-1.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10157 bytes Input file size = 10877 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9400 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9391 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9391 Output IDAT size = 9391 bytes (766 bytes decrease) Output file size = 9469 bytes (1408 bytes = 12.94% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-11-1.png 288x288 pixels, 8 bits/pixel, 202 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10828 bytes Input file size = 11536 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 10091 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 10074 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 10074 Output IDAT size = 10074 bytes (754 bytes decrease) Output file size = 10152 bytes (1384 bytes = 12.00% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-12-1.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10954 bytes Input file size = 11674 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 10178 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 10174 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 10174 Output IDAT size = 10174 bytes (780 bytes decrease) Output file size = 10252 bytes (1422 bytes = 12.18% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-13-1.png 288x288 pixels, 8 bits/pixel, 207 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10163 bytes Input file size = 10886 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9466 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9466 Output IDAT size = 9466 bytes (697 bytes decrease) Output file size = 9544 bytes (1342 bytes = 12.33% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-14-1.png 288x288 pixels, 8 bits/pixel, 203 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10181 bytes Input file size = 10892 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9492 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9476 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9476 Output IDAT size = 9476 bytes (705 bytes decrease) Output file size = 9554 bytes (1338 bytes = 12.28% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-15-1.png 288x288 pixels, 8 bits/pixel, 205 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 9679 bytes Input file size = 10396 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9018 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9007 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9007 Output IDAT size = 9007 bytes (672 bytes decrease) Output file size = 9085 bytes (1311 bytes = 12.61% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/HAXC_files/figure-html/unnamed-chunk-16-1.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 10157 bytes Input file size = 10877 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 9400 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9391 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 9391 Output IDAT size = 9391 bytes (766 bytes decrease) Output file size = 9469 bytes (1408 bytes = 12.94% decrease) --- finished re-building ‘HAXC.Rmd’ --- re-building ‘NALC.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/NALC_files/figure-html/unnamed-chunk-12-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 48687 bytes Input file size = 48825 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 47679 zc = 9 zm = 8 zs = 1 f = 5 IDAT size = 47159 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 5 IDAT size = 47159 Output IDAT size = 47159 bytes (1528 bytes decrease) Output file size = 47237 bytes (1588 bytes = 3.25% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/NALC_files/figure-html/unnamed-chunk-12-2.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 31122 bytes Input file size = 31236 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 28096 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 28096 Output IDAT size = 28096 bytes (3026 bytes decrease) Output file size = 28174 bytes (3062 bytes = 9.80% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/NALC_files/figure-html/unnamed-chunk-13-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 34828 bytes Input file size = 34954 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 32747 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 32747 Output IDAT size = 32747 bytes (2081 bytes decrease) Output file size = 32825 bytes (2129 bytes = 6.09% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/NALC_files/figure-html/unnamed-chunk-13-2.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 35630 bytes Input file size = 35756 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 32399 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 32399 Output IDAT size = 32399 bytes (3231 bytes decrease) Output file size = 32477 bytes (3279 bytes = 9.17% decrease) --- finished re-building ‘NALC.Rmd’ --- re-building ‘copula_GARCH.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/copula_GARCH_files/figure-html/unnamed-chunk-3-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 62204 bytes Input file size = 62366 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 59134 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 59134 Output IDAT size = 59134 bytes (3070 bytes decrease) Output file size = 59212 bytes (3154 bytes = 5.06% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/copula_GARCH_files/figure-html/unnamed-chunk-5-1.png 576x576 pixels, 8 bits/pixel, 256 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 20748 bytes Input file size = 21630 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 19100 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 18890 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 18890 Output IDAT size = 18890 bytes (1858 bytes decrease) Output file size = 18968 bytes (2662 bytes = 12.31% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/copula_GARCH_files/figure-html/unnamed-chunk-7-1.png 576x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 61628 bytes Input file size = 61790 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 60748 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 58413 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 5 IDAT size = 58413 Output IDAT size = 58413 bytes (3215 bytes decrease) Output file size = 58491 bytes (3299 bytes = 5.34% decrease) --- finished re-building ‘copula_GARCH.Rmd’ --- re-building ‘dNAC.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/dNAC_files/figure-html/wire+level-1.png 288x288 pixels, 8 bits/pixel, 255 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 17088 bytes Input file size = 17967 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 15997 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 15724 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 15724 Output IDAT size = 15724 bytes (1364 bytes decrease) Output file size = 15802 bytes (2165 bytes = 12.05% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/dNAC_files/figure-html/wire+level-2.png 288x288 pixels, 8 bits/pixel, 255 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 12058 bytes Input file size = 12925 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 11518 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 11518 Output IDAT size = 11518 bytes (540 bytes decrease) Output file size = 11596 bytes (1329 bytes = 10.28% decrease) --- finished re-building ‘dNAC.Rmd’ --- re-building ‘empiricial_copulas.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/plot-margins-1.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 3976 bytes Input file size = 4684 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3502 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3502 Output IDAT size = 3502 bytes (474 bytes decrease) Output file size = 3580 bytes (1104 bytes = 23.57% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/plot-margins-2.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 3877 bytes Input file size = 4585 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3418 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3418 Output IDAT size = 3418 bytes (459 bytes decrease) Output file size = 3496 bytes (1089 bytes = 23.75% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/plot-margins-3.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 3940 bytes Input file size = 4648 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3449 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3449 Output IDAT size = 3449 bytes (491 bytes decrease) Output file size = 3527 bytes (1121 bytes = 24.12% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/plot-margins-4.png 288x288 pixels, 8 bits/pixel, 206 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 3883 bytes Input file size = 4591 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3406 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3406 Output IDAT size = 3406 bytes (477 bytes decrease) Output file size = 3484 bytes (1107 bytes = 24.11% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/plot-mass-1.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 10251 bytes Input file size = 10341 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 7064 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 7064 Output IDAT size = 7064 bytes (3187 bytes decrease) Output file size = 7142 bytes (3199 bytes = 30.94% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/plot-mass-2.png 288x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 7637 bytes Input file size = 7715 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 6019 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 6019 Output IDAT size = 6019 bytes (1618 bytes decrease) Output file size = 6097 bytes (1618 bytes = 20.97% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/wireframes-1.png 288x288 pixels, 8 bits/pixel, 219 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 17773 bytes Input file size = 18544 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 16959 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 16959 Output IDAT size = 16959 bytes (814 bytes decrease) Output file size = 17037 bytes (1507 bytes = 8.13% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/empiricial_copulas_files/figure-html/wireframes-2.png 288x288 pixels, 8 bits/pixel, 220 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 17712 bytes Input file size = 18486 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 16901 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 16901 Output IDAT size = 16901 bytes (811 bytes decrease) Output file size = 16979 bytes (1507 bytes = 8.15% decrease) --- finished re-building ‘empiricial_copulas.Rmd’ --- re-building ‘logL_visualization.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/logL_visualization_files/figure-html/unnamed-chunk-6-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 31975 bytes Input file size = 32089 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 26245 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 26245 Output IDAT size = 26245 bytes (5730 bytes decrease) Output file size = 26323 bytes (5766 bytes = 17.97% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/logL_visualization_files/figure-html/unnamed-chunk-8-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 28591 bytes Input file size = 28705 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 24027 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 24027 Output IDAT size = 24027 bytes (4564 bytes decrease) Output file size = 24105 bytes (4600 bytes = 16.03% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/logL_visualization_files/figure-html/unnamed-chunk-11-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 31104 bytes Input file size = 31218 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 24067 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 24067 Output IDAT size = 24067 bytes (7037 bytes decrease) Output file size = 24145 bytes (7073 bytes = 22.66% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/logL_visualization_files/figure-html/unnamed-chunk-15-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 31402 bytes Input file size = 31516 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 25526 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 25526 Output IDAT size = 25526 bytes (5876 bytes decrease) Output file size = 25604 bytes (5912 bytes = 18.76% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/logL_visualization_files/figure-html/unnamed-chunk-19-1.png 720x576 pixels, 3x8 bits/pixel, RGB Input IDAT size = 28772 bytes Input file size = 28886 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 22690 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 22690 Output IDAT size = 22690 bytes (6082 bytes decrease) Output file size = 22768 bytes (6118 bytes = 21.18% decrease) --- finished re-building ‘logL_visualization.Rmd’ --- re-building ‘qrng.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/indep-copula-1.png 576x288 pixels, 8 bits/pixel, 232 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 37006 bytes Input file size = 37840 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 34692 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 34170 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 34170 Output IDAT size = 34170 bytes (2836 bytes decrease) Output file size = 34248 bytes (3592 bytes = 9.49% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/plot-clayton-1.png 576x288 pixels, 8 bits/pixel, 192 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 5788 bytes Input file size = 6454 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 4981 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 4981 Output IDAT size = 4981 bytes (807 bytes decrease) Output file size = 5059 bytes (1395 bytes = 21.61% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/t-Cop-fig-1.png 576x288 pixels, 8 bits/pixel, 199 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 5920 bytes Input file size = 6607 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 5040 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 5040 Output IDAT size = 5040 bytes (880 bytes decrease) Output file size = 5118 bytes (1489 bytes = 22.54% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/plot-MO-1.png 576x288 pixels, 8 bits/pixel, 194 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 5831 bytes Input file size = 6503 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 5066 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 5066 Output IDAT size = 5066 bytes (765 bytes decrease) Output file size = 5144 bytes (1359 bytes = 20.90% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/plot-t3d-1.png 288x288 pixels, 8 bits/pixel, 256 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 29019 bytes Input file size = 29913 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 27790 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 27581 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 27581 Output IDAT size = 27581 bytes (1438 bytes decrease) Output file size = 27659 bytes (2254 bytes = 7.54% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/pl-q-t3d-1.png 288x288 pixels, 8 bits/pixel, 256 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 29925 bytes Input file size = 30819 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 28713 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 28521 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 28521 Output IDAT size = 28521 bytes (1404 bytes decrease) Output file size = 28599 bytes (2220 bytes = 7.20% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/clouds.t3d-1.png 576x288 pixels, 8 bits/pixel, 256 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 23769 bytes Input file size = 24651 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 22605 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 22351 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 22351 Output IDAT size = 22351 bytes (1418 bytes decrease) Output file size = 22429 bytes (2222 bytes = 9.01% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/pl.col-CMD-1.png 576x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 63931 bytes Input file size = 64093 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 41402 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 41402 Output IDAT size = 41402 bytes (22529 bytes decrease) Output file size = 41480 bytes (22613 bytes = 35.28% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/pl.col-MO-1.png 576x288 pixels, 3x8 bits/pixel, RGB Input IDAT size = 51058 bytes Input file size = 51208 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 41141 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 41141 Output IDAT size = 41141 bytes (9917 bytes decrease) Output file size = 41219 bytes (9989 bytes = 19.51% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/qrng_files/figure-html/plot-sim-1.png 336x336 pixels, 3x8 bits/pixel, RGB Input IDAT size = 25556 bytes Input file size = 25670 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 17946 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 17946 Output IDAT size = 17946 bytes (7610 bytes decrease) Output file size = 18024 bytes (7646 bytes = 29.79% decrease) --- finished re-building ‘qrng.Rmd’ --- re-building ‘wild_animals.Rmd’ using rmarkdown ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/unnamed-chunk-1-1.png 288x288 pixels, 8 bits/pixel, 233 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 2808 bytes Input file size = 3597 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 2480 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 2480 Output IDAT size = 2480 bytes (328 bytes decrease) Output file size = 2558 bytes (1039 bytes = 28.89% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/unnamed-chunk-1-2.png 288x288 pixels, 8 bits/pixel, 243 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 2807 bytes Input file size = 3626 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 2468 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 2468 Output IDAT size = 2468 bytes (339 bytes decrease) Output file size = 2546 bytes (1080 bytes = 29.78% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/unnamed-chunk-1-3.png 288x288 pixels, 8 bits/pixel, 192 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 5186 bytes Input file size = 5852 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 4606 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 4606 Output IDAT size = 4606 bytes (580 bytes decrease) Output file size = 4684 bytes (1168 bytes = 19.96% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/unnamed-chunk-2-1.png 288x288 pixels, 8 bits/pixel, 248 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 14931 bytes Input file size = 15777 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 14036 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 13451 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 13451 Output IDAT size = 13451 bytes (1480 bytes decrease) Output file size = 13529 bytes (2248 bytes = 14.25% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/plot.margins-1.png 288x288 pixels, 8 bits/pixel, 249 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 3365 bytes Input file size = 4202 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3147 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3147 Output IDAT size = 3147 bytes (218 bytes decrease) Output file size = 3225 bytes (977 bytes = 23.25% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/plot.U-1.png 288x288 pixels, 8 bits/pixel, 192 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 4475 bytes Input file size = 5141 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3998 zc = 9 zm = 8 zs = 1 f = 0 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 3998 Output IDAT size = 3998 bytes (477 bytes decrease) Output file size = 4076 bytes (1065 bytes = 20.72% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/splom.U-1.png 288x288 pixels, 8 bits/pixel, 256 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 30756 bytes Input file size = 31650 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 30404 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 29440 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 29440 Output IDAT size = 29440 bytes (1316 bytes decrease) Output file size = 29518 bytes (2132 bytes = 6.74% decrease) ** Processing: /data/gannet/ripley/R/packages/tests-devel/copula.Rcheck/vign_test/copula/vignettes/wild_animals_files/figure-html/cloud.U-1.png 288x288 pixels, 8 bits/pixel, 256 colors in palette Reducing image to 8 bits/pixel, grayscale Input IDAT size = 20411 bytes Input file size = 21293 bytes Trying: zc = 9 zm = 8 zs = 0 f = 0 IDAT size = 19454 zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 19168 zc = 1 zm = 8 zs = 2 f = 0 zc = 9 zm = 8 zs = 3 f = 0 zc = 9 zm = 8 zs = 0 f = 5 zc = 9 zm = 8 zs = 1 f = 5 zc = 1 zm = 8 zs = 2 f = 5 zc = 9 zm = 8 zs = 3 f = 5 Selecting parameters: zc = 9 zm = 8 zs = 1 f = 0 IDAT size = 19168 Output IDAT size = 19168 bytes (1243 bytes decrease) Output file size = 19246 bytes (2047 bytes = 9.61% decrease) --- finished re-building ‘wild_animals.Rmd’ --- re-building ‘Frank-Rmpfr.Rnw’ using Sweave Loading required package: copula Loading required package: Rmpfr Loading required package: gmp Attaching package: 'gmp' The following objects are masked from 'package:copula': Eulerian, Eulerian.all, Stirling1, Stirling1.all, Stirling2, Stirling2.all The following objects are masked from 'package:base': %*%, apply, crossprod, matrix, tcrossprod C code of R package 'Rmpfr': GMP using 64 bits per limb Attaching package: 'Rmpfr' The following object is masked from 'package:gmp': outer The following objects are masked from 'package:copula': Bernoulli, log1mexp, log1pexp The following objects are masked from 'package:stats': dbinom, dgamma, dnbinom, dnorm, dpois, dt, pnorm The following objects are masked from 'package:base': cbind, pmax, pmin, rbind --- finished re-building ‘Frank-Rmpfr.Rnw’ --- re-building ‘nacopula-pkg.Rnw’ using Sweave Loading required package: copula Loading required package: lattice Warning in pnacopula(C3joe.5, c(0.5, 0.5, 0.5)) : 'pnacopula' is deprecated. Use 'pCopula' instead. See help("Deprecated") Warning in pnacopula(C3joe.5, c(0.99, 0.99, 0.99)) : 'pnacopula' is deprecated. Use 'pCopula' instead. See help("Deprecated") Warning in pnacopula(C_9_clayton, rep(0.5, 9)) : 'pnacopula' is deprecated. Use 'pCopula' instead. See help("Deprecated") Warning in pnacopula(C_9_clayton, rep(0.99, 9)) : 'pnacopula' is deprecated. Use 'pCopula' instead. See help("Deprecated") --- finished re-building ‘nacopula-pkg.Rnw’ Warning: elapsed-time limit of 1 hours reached for sub-process --- re-building ‘rhoAMH-dilog.Rnw’ using Sweave Loading required package: copula Loading required package: sfsmisc Warning in xy.coords(x, y, xlabel, ylabel, log) : 190 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 2364 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 1509 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log) : 36 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 2364 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 6323 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 7933 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 24289 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log) : 148 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 2364 y values <= 0 omitted from logarithmic plot Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 6323 y values <= 0 omitted from logarithmic plot Error: processing vignette 'rhoAMH-dilog.Rnw' failed with diagnostics: Running 'texi2dvi' on 'rhoAMH-dilog.tex' failed. LaTeX errors: ! Interruption. \GenericError ...@ \else 6\fi \endcsname \protect \GenericError l.279 \end{align} ! Emergency stop. \GenericError ...@ \else 6\fi \endcsname \protect \GenericError l.279 \end{align} ! ==> Fatal error occurred, no output PDF file produced! --- failed re-building ‘rhoAMH-dilog.Rnw’ SUMMARY: processing the following file failed: ‘rhoAMH-dilog.Rnw’ Error: Vignette re-building failed. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.1-4
Check: installed package size
Result: NOTE installed size is 7.8Mb sub-directories of 1Mb or more: R 2.4Mb doc 3.2Mb Flavors: r-release-macos-arm64, r-release-macos-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64

Version: 1.1-4
Flags: --no-vignettes
Check: installed package size
Result: NOTE installed size is 7.3Mb sub-directories of 1Mb or more: R 2.1Mb doc 3.2Mb Flavors: r-release-windows-x86_64, r-oldrel-windows-x86_64

Package diptest

Current CRAN status: OK: 13

Package DPQ

Current CRAN status: ERROR: 1, OK: 12

Additional issues

rchk

Version: 0.5-9
Check: tests
Result: ERROR Running ‘bd0-tst.R’ [5s/6s] Running ‘chisq-nonc-ex.R’ [26s/33s] Running ‘dgamma-tst.R’ [1s/1s] Running ‘dnbinom-tst.R’ [25s/33s] Running ‘dnchisq-tst.R’ [0s/1s] Running ‘dt-ex.R’ [10s/15s] Running ‘expm1x-tst.R’ [3s/4s] Running ‘hyper-dist-ex.R’ [18s/22s] Running ‘log4p1p-exp.R’ [3s/4s] Running ‘pnbeta-tst.R’ [0s/1s] Running ‘pnt-prec.R’ [7s/10s] Running ‘pow-tst.R’ [4s/5s] Running ‘ppois-ex.R’ [1s/2s] Running ‘pqnorm_extreme.R’ [6s/7s] Running ‘qPoisBinom-ex.R’ [1s/1s] Running ‘qbeta-dist.R’ [6s/8s] Running ‘qbeta-tst.R’ [0s/1s] Running ‘qgamma-ex.R’ [13s/16s] Running ‘stirlerr-tst.R’ [83s/94s] Running ‘t-nonc-tst.R’ [14s/16s] Running ‘wienergerm-pchisq-tst.R’ [0s/1s] Running ‘wienergerm_nchisq.R’ [6s/6s] Running the tests in ‘tests/stirlerr-tst.R’ failed. Complete output: > #### Testing stirlerr() > #### =================== {previous 2nd part of this, now -->>> ./bd0-tst.R <<<--- > require(DPQ) Loading required package: DPQ > for(pkg in c("Rmpfr", "DPQmpfr")) + if(!requireNamespace(pkg)) { + cat("no CRAN package", sQuote(pkg), " ---> no tests here.\n") + q("no") + } Loading required namespace: Rmpfr Loading required namespace: DPQmpfr > require("Rmpfr") Loading required package: Rmpfr Loading required package: gmp Attaching package: 'gmp' The following objects are masked from 'package:base': %*%, apply, crossprod, matrix, tcrossprod C code of R package 'Rmpfr': GMP using 64 bits per limb Attaching package: 'Rmpfr' The following object is masked from 'package:gmp': outer The following object is masked from 'package:DPQ': log1mexp The following objects are masked from 'package:stats': dbinom, dgamma, dnbinom, dnorm, dpois, dt, pnorm The following objects are masked from 'package:base': cbind, pmax, pmin, rbind > > source(system.file(package="DPQ", "test-tools.R", mustWork=TRUE)) > ## => showProc.time(), ... list_() , loadList() , readRDS_() , save2RDS() > ##_ options(conflicts.policy = list(depends.ok=TRUE, error=FALSE, warn=FALSE)) > require(sfsmisc) # masking 'list_' *and* gmp's factorize(), is.whole() Loading required package: sfsmisc Attaching package: 'sfsmisc' The following object is masked _by_ '.GlobalEnv': list_ The following objects are masked from 'package:gmp': factorize, is.whole > ##_ options(conflicts.policy = NULL)o > > ## plot1cuts() , etc: ---> ../inst/extraR/relErr-plots.R <<<<<<< > ## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > source(system.file(package="DPQ", "extraR", "relErr-plots.R", mustWork=TRUE)) > > do.pdf <- TRUE # (manually) > do.pdf <- !dev.interactive(orNone = TRUE) > do.pdf [1] TRUE > if(do.pdf) { + pdf.options(width = 9, height = 6.5) # for all pdf plots {9/6.5 = 1.38 ; 4/3 < 1.38 < sqrt(2) [A4] + pdf("stirlerr-tst.pdf") + } > > showProc.time() Time (user system elapsed): 0.08 0 0.079 > (doExtras <- DPQ:::doExtras()) [1] FALSE > (noLdbl <- (.Machine$sizeof.longdouble <= 8)) ## TRUE when --disable-long-double or 'M1mac' .. [1] FALSE > (M.mac <- grepl("aarch64-apple", R.version$platform)) # Mac with M1, M2, ... proc [1] FALSE > > abs19 <- function(r) pmax(abs(r), 1e-19) # cut |err| to positive {for log-plots} > > options(width = 100, nwarnings = 1e5, warnPartialMatchArgs = FALSE) > > > > ##=== Really, dpois_raw() and dbinom_raw() *both* use stirlerr(x) for "all" 'x > 0' > ## ~~~~~~~~~~~ ~~~~~~~~~~~~ =========== ===== ! > > ## below, 6 "it's okay, but *far* from perfect:" ===> need more terms in stirlerr() [ > ## April 20: MM added more terms up to S10; 2024-01: up to S12 ..helps a little only > x <- lseq(1/16, 6, length=2048) > system.time(stM <- DPQmpfr::stirlerrM(Rmpfr::mpfr(x,2048))) # 1.7 sec elapsed user system elapsed 3.052 0.028 3.418 > plot(x, stirlerr(x, use.halves=FALSE) - stM, type="l", log="x", main="absolute Error") > plot(x, stirlerr(x, use.halves=FALSE) / stM - 1, type="l", log="x", main="relative Error") > plot(x, abs(stirlerr(x, use.halves=FALSE) / stM - 1), type="l", log="xy",main="|relative Error|") > drawEps.h(-(52:50)) > ## lgammacor() does *NOT* help, as it is *designed* for x >= 10 ... (but is interesting there) > ## > ## ==> Need another chebyshev() or rational-approx. for x in [.1, 7] or so !! > > ##=============> see also ../Misc/stirlerr-trms.R <=============== > ## ~~~~~~~~~~~~~~~~~~~~~~~ > > cutoffs <- c(15,35,80,500) # cut points, n=*, in the stirlerr() "algorithm" > ## > n <- c(seq(1,15, by=1/4),seq(16, 25, by=1/2), 26:30, seq(32,50, by=2), seq(55,1000, by=5), + 20*c(51:99), 50*(40:80), 150*(27:48), 500*(15:20)) > st.n <- stirlerr(n, "R3")# rather use.halves=TRUE; but here , use.halves=FALSE > plot(st.n ~ n, log="xy", type="b") ## looks good now (straight line descending {in log-log !} > nM <- mpfr(n, 2048) > st.nM <- stirlerr(nM, use.halves=FALSE) ## << on purpose > all.equal(asNumeric(st.nM), st.n)# TRUE [1] TRUE > all.equal(st.nM, as(st.n,"mpfr"))# .. difference: 3.381400e-14 was 1.05884.........e-15 [1] "Mean relative difference: 3.317339e-14" > all.equal(roundMpfr(st.nM, 64), as(st.n,"mpfr"), tolerance=1e-16)# (ditto) [1] "Mean relative difference: 3.317339e-14" > > > ## --- Look at the direct formula -- why is it not good for n ~= 5 ? > ## > ## Preliminary Conclusions : > ## 1. there is *some* cancellation even for small n (how much?) > ## 2. lgamma1p(n) does really not help much compared to lgamma(n+1) --- but a tiny bit in some cases > > ### 1. Investigating lgamma1p(n) vs lgamma(n+1) for n < 1 ============================================= > > ##' @title Relative Error of lgamma(n+1) vs lgamma1p() vs MM's stirlerrD2(): > ##' @param n numeric, typically n << 1 > ##' @param precBits > ##' @return relative error WRT mpfr(n, precBits) > ##' @author Martin Maechler > relE.lgam1 <- function(n, precBits = if(doExtras) 1024 else 320) { + M_LN2PI <- 1.837877066409345483 # ~ log(2*Const("pi",60)); very slightly more accurate than log(2*pi) + st <- lgamma(n +1) - (n +0.5)*log(n) + n - M_LN2PI/2 + st. <- lgamma1p(n) - (n +0.5)*log(n) + n - M_LN2PI/2 # "lgamma1p" + st2 <- lgamma(n) + n*(1-(l.n <- log(n))) + (l.n - M_LN2PI)/2 # "MM2" + st0 <- -(l.n + M_LN2PI)/2 # "n0" + nM <- mpfr(n, precBits) + stM <- lgamma(nM+1) - (nM+0.5)*log(nM) + nM - log(2*Const("pi", precBits))/2 + ## stM <- roundMpfr(stM, 128) + cbind("R3" = asNumeric(relErrV(stM, st)) + , "lgamma1p"= asNumeric(relErrV(stM, st.)) + , "MM2" = asNumeric(relErrV(stM, st2)) + , "n0" = asNumeric(relErrV(stM, st0)) + ) + } > > n <- 2^-seq.int(1022, 1, by = -1/4) > relEx <- relE.lgam1(n) > showProc.time() Time (user system elapsed): 6.067 0.051 6.956 > > ## Is *equivalent* to 'new' stirlerr_simpl(n version = *) [not for <mpfr> though, see 'relEmat']: > (simpVer <- eval(formals(stirlerr_simpl)$version)) [1] "R3" "lgamma1p" "MM2" "n0" > if(is.null(simpVer)) { warning("got wrong old version of package 'DPQ':") + print(packageDescription("DPQ")) + stop("invalid outdated version package 'DPQ'") + } > stir.allS <- function(n) sapply(simpVer, function(v) stirlerr_simpl(n, version=v)) > stirS <- stir.allS(n) # matrix > nM <- mpfr(n, 256) # "high" precision = 256 should suffice! > stirM <- stirlerr(nM) > releS <- asNumeric(relErrV(stirM, stirS)) > all.equal(relEx, releS, tolerance = 0) # see TRUE on Linux [1] TRUE > stopifnot(all.equal(relEx, releS, tolerance = if(noLdbl) 2e-15 else 1e-15)) > simpVer3 <- simpVer[simpVer != "lgamma1p"] # have no mpfr-ified lgamma1p()! > ## stirlerr_simpl(<mpfr>, *) : > stirM2 <- sapplyMpfr(simpVer3, function(v) stirlerr_simpl(nM, version=v)) > > ## TODO ?: > ## apply(stirM2, 2, function(v) all.equal(v, stirS, check.class=FALSE)) > ## releS2 <- asNumeric(relErrV(stirM2, stirS)) > ## all.equal(relEx, releS, tolerance = 0) # see TRUE on Linux > ## stopifnot(all.equal(relEx, releS, tolerance = 1e-15)) > relEmat <- matrix(NA, ncol(stirM2), ncol(stirS), + dimnames = list(simpVer3, colnames(stirS))) > for(j in seq_len(ncol(stirM2))) + for(k in seq_len(ncol(stirS))) + relEmat[j,k] <- asNumeric(relErr(stirM2[,j], stirS[,k])) > relEmat R3 lgamma1p MM2 n0 R3 6.069585e-17 6.069957e-17 6.111712e-17 9.701665e-06 MM2 6.069585e-17 6.069957e-17 6.111712e-17 9.701665e-06 n0 9.701700e-06 9.701700e-06 9.701700e-06 6.054986e-17 > round(-log10(relEmat), 2) # well .. {why? / expected ?} R3 lgamma1p MM2 n0 R3 16.22 16.22 16.21 5.01 MM2 16.22 16.22 16.21 5.01 n0 5.01 5.01 5.01 16.22 > > cols <- c("gray30", adjustcolor(c(2,3,4), 1/2)); lwd <- c(1, 3,3,3) > stopifnot((k <- length(cols)) == ncol(relEx), k == length(lwd)) > matplot(n, relEx, type = "l", log="x", col=cols, lwd=lwd, ylim = c(-1,1)*4.5e-16, + main = "relative errors of direct (approx.) formula for stirlerr(n), small n") > mtext("really small errors are dominated by small (< 2^-53) errors of log(n)") > ## very interesting: there are different intervals <---> log(n) Qpattern !! > ## -- but very small difference, only for n >~= 1/1000 but not before > drawEps.h(negative=TRUE) # abline(h= c(-4,-2:2, 4)*2^-53, lty=c(2,2,2, 1, 2,2,2), col="gray") > legend("topleft", legend = colnames(relEx), col=cols, lwd=3) > > ## zoomed in a bit: > n. <- 2^-seq.int(400,2, by = -1/4) > relEx. <- relE.lgam1(n.) > matplot(n., relEx., type = "l", log="x", col=cols, lwd=lwd, ylim = c(-1,1)*4.5e-16, + main = "relative errors of direct (approx.) formula for stirlerr(n), small n") > drawEps.h(negative=TRUE) > legend("topleft", legend = colnames(relEx.), col=cols, lwd=3) > > ##====> Absolute errors (and look at "n0") -------------------------------------- > matplot(n., abs19(relEx.), type = "l", log="xy", col=cols, lwd=lwd, ylim = c(4e-17, 5e-16), + main = quote(abs(relErr(stirlerr_simpl(n, '*'))))) > drawEps.h(); legend("top", legend = colnames(relEx.), col=cols, lwd=3) > lines(n., abs19(relEx.[,"n0"]), type = "o", cex=1/4, col=cols[4], lwd=2) > > ## more zooom-in > n.2 <- 2^-seq.int(85, 50, by= -1/100) > stirS.2 <- sapply(c("R3", "lgamma1p", "n0"), function(v) stirlerr_simpl(n.2, version=v)) > releS.2 <- asNumeric(relErrV(stirlerr(mpfr(n.2, 320)), stirS.2)) > > matplot(n.2, abs19(releS.2), type = "l", log="xy", col=cols, lwd=lwd, ylim = c(4e-17, 5e-16), + main = quote(abs(relErr(stirlerr_simpl(n, '*'))))) > drawEps.h(); legend("top", legend = colnames(releS.2), col=cols, lwd=3) > abline(v = 5e-17, col=(cb <- adjustcolor("skyblue4", 1/2)), lwd=2, lty=3) > axis(1, at=5e-17, col.axis=cb, line=-1/4, cex = 3/4) > > matplot(n.2, abs19(releS.2), type = "l", log="xy", col=cols, lwd=lwd, ylim = c(4e-17, 5e-16), + xaxt="n", xlim = c(8e-18, 1e-15), ## <<<<<<<<<<<<<<<<<<< Zoom-in + xlab = quote(n), main = quote(abs(relErr(stirlerr_simpl(n, '*'))))) > eaxis(1); drawEps.h(); legend("top", legend = colnames(releS.2), col=cols, lwd=3) > abline(v = 5e-17, col=(cb <- adjustcolor("skyblue4", 1/2)), lwd=2, lty=3) > mtext('stirlerr_simpl(*, "n0") is as good as others for n <= 5e-17', col=adjustcolor(cols[3], 2)) > ## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > > ## ===> "all *but* "n0" approximations for "larger" small n: > n2 <- 2^-seq.int(20,0, length.out=1000) > relEx2 <- relE.lgam1(n2)[,c("R3", "lgamma1p", "MM2")] # "n0" is "bad": |relE| >= 2.2e-6 ! > cols <- c("gray30", adjustcolor(c(2,4), 1/2)); lwd <- c(1, 3,3) > stopifnot((k <- length(cols)) == ncol(relEx2), k == length(lwd)) > matplot(n2, relEx2, type = "l", log="x", col=cols, lwd=lwd, ylim = c(-3,3)*1e-15, xaxt="n", + main = "relative errors of direct (approx.) formula for stirlerr(n), small n") > eaxis(1, sub10=c(-3,0)); drawEps.h(negative=TRUE) > legend("topleft", legend = colnames(relEx2), col=cols, lwd=3) > ##==> "MM" is *NOT* good for n < 1 *but* > > ## "the same" -- even larger small n: > n3 <- seq(.01, 5, length=1000) > relEx3 <- relE.lgam1(n3)[,c("R3", "lgamma1p", "MM2")] # "no" is "bad" .. > stopifnot((k <- length(cols)) == ncol(relEx3), k == length(lwd)) > > matplot(n3, relEx3, type = "l", col=cols, lwd=lwd, + main = "relative errors of direct (approx.) formula for stirlerr(n), small n") > legend("topleft", legend = colnames(relEx3), col=cols, lwd=3) > drawEps.h(negative=TRUE) > > matplot(n3, abs19(relEx3), type = "l", col=cols, lwd=lwd, + log="y", ylim = 2^-c(54, 44), yaxt = "n", ylab = quote(abs(relE)), xlab=quote(n), + main = "|relative errors| of direct (approx.) formula for stirlerr(n), small n") > eaxis(2, cex.axis=0.9); legend("topleft", legend = colnames(relEx3), col=cols, lwd=3) > drawEps.h() > lines(n3, smooth.spline(abs(relEx3)[,1], df=12)$y, lwd=3, col=cols[1]) > lines(n3, smooth.spline(abs(relEx3)[,2], df=12)$y, lwd=3, col=adjustcolor(cols[2], 1/2)) > lines(n3, smooth.spline(abs(relEx3)[,3], df=12)$y, lwd=4, col=adjustcolor(cols[3], offset = rep(.2,4))) > ## ===> from n >~= 1, "MM2" is definitely better up to n = 5 !! > > ## Check log() only : > plot(n, asNumeric(relErrV(log(mpfr(n, 256)), log(n))), ylim = c(-1,1)*2^-53, + log="x", type="l", xaxt="n") ## ===> indeed --- log(n) approximation pattern !! > eaxis(1) ; drawEps.h(negative=TRUE) > showProc.time() Time (user system elapsed): 10.756 0.059 11.923 > > ## =========== "R3" vs "lgamma1p" -------------------------- which is better? > > ## really for the very small n, all is dominated by -(n+0.5)*log(n); and lgamma1p() is unnecessary! > i <- 1:20; ni <- n[i] > lgamma1p(ni) [1] -1.284347e-308 -1.527355e-308 -1.816342e-308 -2.160006e-308 -2.568695e-308 -3.054710e-308 [7] -3.632683e-308 -4.320013e-308 -5.137390e-308 -6.109421e-308 -7.265367e-308 -8.640026e-308 [13] -1.027478e-307 -1.221884e-307 -1.453073e-307 -1.728005e-307 -2.054956e-307 -2.443768e-307 [19] -2.906147e-307 -3.456010e-307 > - (ni +0.5)*log(ni) + ni [1] 354.1982 354.1116 354.0249 353.9383 353.8516 353.7650 353.6783 353.5917 353.5051 353.4184 [11] 353.3318 353.2451 353.1585 353.0718 352.9852 352.8986 352.8119 352.7253 352.6386 352.5520 > > ## much less extreme: > n2 <- lseq(2^-12, 1/2, length=1000) > relE2 <- relE.lgam1(n2)[,-4] > > cols <- c("gray30", adjustcolor(2:3, 1/2)); lwd <- c(1,3,3) > matplot(n2, relE2, type = "l", log="x", col=cols, lwd=lwd) > legend("topleft", legend=colnames(relE2), col=cols, lwd=2, lty=1:3) > drawEps.h(negative=TRUE) > > matplot(n2, abs19(relE2), type = "l", log="xy", col=cols, lwd=lwd, ylim = c(6e-17, 1e-15), + xaxt = "n"); eaxis(1, sub10=c(-2,0)) > legend("topleft", legend=colnames(relE2), col=cols, lwd=2, lty=1:3) > drawEps.h() > ## "MM2" is *worse* here, n < 1/2 > for(j in 1:3) lines(n2, smooth.spline(abs(relE2[,j]), df=10)$y, lwd=3, + col=adjustcolor(cols[j], 1.5, offset = rep(-1/4, 4))) > ## "lgammap very slightly better in [0.002, 0.05] ... > ## "TODO": draw 0.90-quantile curves {--> cobs::cobs() ?} instead of mean-curves? > > ## which is better? ... "random difference" > d.absrelE <- abs(relE2[,"R3"]) - abs(relE2[,"lgamma1p"]) > plot (n2, d.absrelE, type = "l", log="x", # no clear picture ... + main = "|relE_R3| - |relE_lgamma1p|", axes=FALSE, frame.plot=TRUE) > eaxis(1, sub10=c(-2,1)); eaxis(2); axis(3, at=max(n2)); abline(v = max(n2), lty=3, col="gray") > ## 'lgamma1p' very slightly better: > lines(n2, smooth.spline(d.absrelE, df=12)$y, lwd=3, col=2) > > ## not really small n at all == here see, how "bad" the direct formula gets for 1 < n < 10 or so > n3 <- lseq(2^-14, 2^2, length=800) > relE3 <- relE.lgam1(n3)[, -4] > > matplot(n3, relE3, type = "l", log="x", col=cols, lty=1, lwd = c(1,3), + main = quote(rel.lgam1(n)), xlab=quote(n)) > > matplot(n3, abs19(relE3), type = "l", log="xy", col=cols, lwd = c(1,3), xaxt="n", + main = quote(abs(rel.lgam1(n))), xlab=quote(n), ylim = c(2e-17, 4e-14)) > drawEps.h(); eaxis(1, sub10=c(-2,3)) > legend("topleft", legend=colnames(relE3), col=cols, lwd=2) > ## very small difference --- draw the 3 smoothers : > for(j in 1:3) { + ll <- lowess(log(n3), abs19(relE3[, j]), f= 1/12) + with(ll, lines(exp(x), y, col=adjustcolor(cols[j], 1.5), lwd=3)) + } > ## ==> lgamma1p(.) very slightly in n ~ 10^-4 -- 10^-2 --- but not where it matters: n ~ 0.1 -- 1 !! > ## "MM2" gets best from n >~ 1 ! > abline(v=1, lty=3, col = adjustcolor(1, 3/4)) > showProc.time() Time (user system elapsed): 1.142 0.004 1.472 > > > ### 2. relErr( stirlerr(.) ) ============================================================ > > ##' Very revealing plot showing the *relative* approximation error of stirlerr(<dblprec>) > ##' > p.stirlerrDev <- function(n, precBits = if(doExtras) 2048L else 512L, + stnM = stirlerr(mpfr(n, precBits), use.halves=use.halves, verbose=verbose), + abs = FALSE, + ## cut points, n=*, in the stirlerr() algorithm; "FIXME": sync with ../R/dgamma.R <<<< + scheme = c("R3", "R4.4_0"), + cutoffs = switch(match.arg(scheme) + , R3 = c(15, 35, 80, 500) + , R4.4_0 = c(4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.7, + 6.1, 6.5, 7, 7.9, 8.75, 10.5, 13, + 20, 26, 60, 200, 3300, 17.4e6) + ## {FIXME: need to sync} <==> ../man/stirlerr.Rd <==> ../R/dgamma.R + ), + use.halves = missing(cutoffs), + direct.ver = c("R3", "lgamma1p", "MM2", "n0"), + verbose = getOption("verbose"), + type = "b", cex = 1, + col = adjustcolor(1, 3/4), colnB = adjustcolor("orange4", 1/3), + log = if(abs) "xy" else "x", + xlim=NULL, ylim = if(abs) c(8e-18, max(abs(N(relE))))) + { + op <- par(las = 1, mgp=c(2, 0.6, 0)) + on.exit(par(op)) + require("Rmpfr"); require("sfsmisc") + st <- stirlerr(n, scheme=scheme, cutoffs=cutoffs, use.halves=use.halves, direct.ver=direct.ver, + verbose=verbose) + relE <- relErrV(stnM, st) # eps0 = .Machine$double.xmin + N <- asNumeric + form <- if(abs) abs(N(relE)) ~ n else N(relE) ~ n + plot(form, log=log, type=type, cex=cex, col=col, xlim=xlim, ylim=ylim, + ylab = quote(relErrV(stM, st)), axes=FALSE, frame.plot=TRUE, + main = sprintf("stirlerr(n, cutoffs) rel.error [wrt stirlerr(Rmpfr::mpfr(n, %d))]", + precBits)) + eaxis(1, sub10=3) + eaxis(2) + mtext(paste("cutoffs =", deparse1(cutoffs))) + ylog <- par("ylog") + ## FIXME: improve this ---> drawEps.h() above + if(ylog) { + epsC <- c(1,2,4,8)*2^-52 + epsCxp <- expression(epsilon[C],2*epsilon[C], 4*epsilon[C], 8*epsilon[C]) + } else { + epsC <- (-2:2)*2^-52 + epsCxp <- expression(-2*epsilon[C],-epsilon[C], 0, +epsilon[C], +2*epsilon[C]) + } + dy <- diff(par("usr")[3:4]) + if(diff(range(if(ylog) log10(epsC) else epsC)) > dy/50) { + lw <- rep(1/2, 5); lw[if(ylog) 1 else 3] <- 2 + abline( h=epsC, lty=3, lwd=lw) + axis(4, at=epsC, epsCxp, las=2, cex.axis = 3/4, mgp=c(3/4, 1/4, 0), tck=0) + } else ## only x-axis + abline(h=if(ylog) epsC else 0, lty=3, lwd=2) + abline(v = cutoffs, col=colnB) + axis(3, at=cutoffs, col=colnB, col.axis=colnB, + labels = formatC(cutoffs, digits=3, width=1)) + invisible(relE) + } ## p.stirlerrDev() > > showProc.time() Time (user system elapsed): 0.006 0 0.007 > > n <- lseq(2^-10, 1e10, length=4096) > n <- lseq(2^-10, 5000, length=4096) > ## store "expensive" stirlerr() result, and re-use many times below: > nM <- mpfr(n, if(doExtras) 2048 else 512) > st.nM <- stirlerr(nM, use.halves=FALSE) ## << on purpose > > p.stirlerrDev(n=n, stnM=st.nM, use.halves = FALSE) # default cutoffs= c(15, 40, 85, 600) > p.stirlerrDev(n=n, stnM=st.nM, use.halves = FALSE, ylim = c(-1,1)*1e-12) # default cutoffs= c(15, 40, 85, 600) > > ## show the zoom-in region in next plot > yl2 <- 3e-14*c(-1,1) > abline(h = yl2, col=adjustcolor("tomato", 1/4), lwd=3, lty=2) > > if(do.pdf) { dev.off() ; pdf("stirlerr-relErr_1.pdf") } > > ## drop n < 7: > p.stirlerrDev(n=n, stnM=st.nM, xlim = c(7, max(n)), use.halves=FALSE) # default cutoffs= c(15, 40, 85, 600) > abline(h = yl2, col=adjustcolor("tomato", 1/4), lwd=3, lty=2) > > ## The first plot clearly shows we should do better: > ## Current code is switching to less terms too early, loosing up to 2 decimals precision > if(FALSE) # no visible difference {use.halves = T / F }: + p.stirlerrDev(n=n, stnM=st.nM, ylim = yl2, use.halves = FALSE) > p.stirlerrDev(n=n, stnM=st.nM, ylim = yl2, use.halves = TRUE)# exact at n/2 (n <= ..) > abline(h = yl2, col=adjustcolor("tomato", 1/4), lwd=3, lty=2) > > showProc.time() Time (user system elapsed): 3.059 0.008 3.184 > > > if(do.pdf) { dev.off(); pdf("stirlerr-relErr_6-fin-1.pdf") } > > ### ~19.April 2021: "This is close to *the* solution" (but see 'cuts' below) > cuts <- c(7, 12, 20, 26, 60, 200, 3300) > ## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > st. <- stirlerr(n=n , cutoffs = cuts, verbose=TRUE) stirlerr(n, cutoffs = 7,12,20,26,60,200,3300) : case I (n <= 7), using direct formula for n= num [1:2354] 0.000977 0.00098 0.000984 0.000988 0.000991 ... case II (n > 7 ), 7 cutoffs: ( 7, 12, 20, 26, 60, 200, 3300 ): n in cutoff intervals: (7,12] (12,20] (20,26] (26,60] (60,200] (200,3.3e+03] (3.3e+03,Inf] 143 135 69 222 319 743 111 > st.nM <- stirlerr(n=nM, cutoffs = cuts, use.halves=FALSE) ## << on purpose > relE <- asNumeric(relErrV(st.nM, st.)) > head(cbind(n, relE), 20) n relE [1,] 0.0009765625 -5.082434e-18 [2,] 0.0009802536 2.562412e-16 [3,] 0.0009839587 -1.229734e-16 [4,] 0.0009876777 1.527219e-16 [5,] 0.0009914108 8.168569e-17 [6,] 0.0009951581 1.722690e-16 [7,] 0.0009989195 -8.277734e-17 [8,] 0.0010026951 -1.706971e-16 [9,] 0.0010064850 9.143135e-17 [10,] 0.0010102892 1.008544e-16 [11,] 0.0010141077 2.920866e-17 [12,] 0.0010179408 -3.724266e-17 [13,] 0.0010217883 -2.367176e-16 [14,] 0.0010256503 -2.103384e-16 [15,] 0.0010295269 4.023359e-17 [16,] 0.0010334182 2.699887e-16 [17,] 0.0010373242 2.584752e-16 [18,] 0.0010412450 7.004536e-17 [19,] 0.0010451806 2.086952e-17 [20,] 0.0010491311 5.520460e-17 > ## nice printout : > print(cbind(n = format(n, drop0trailing = TRUE), + stirlerr= format(st.,scientific=FALSE, digits=4), + relErr = signif(relE, 4)) + , quote=FALSE) n stirlerr relErr [1,] 9.765625e-04 2.55398004 -5.082e-18 [2,] 9.802536e-04 2.55211721 2.562e-16 [3,] 9.839587e-04 2.55025446 -1.23e-16 [4,] 9.876777e-04 2.54839178 1.527e-16 [5,] 9.914108e-04 2.54652917 8.169e-17 [6,] 9.951581e-04 2.54466664 1.723e-16 [7,] 9.989195e-04 2.54280419 -8.278e-17 [8,] 1.002695e-03 2.54094181 -1.707e-16 [9,] 1.006485e-03 2.53907950 9.143e-17 [10,] 1.010289e-03 2.53721728 1.009e-16 [11,] 1.014108e-03 2.53535513 2.921e-17 [12,] 1.017941e-03 2.53349305 -3.724e-17 [13,] 1.021788e-03 2.53163106 -2.367e-16 [14,] 1.025650e-03 2.52976914 -2.103e-16 [15,] 1.029527e-03 2.52790730 4.023e-17 [16,] 1.033418e-03 2.52604553 2.7e-16 [17,] 1.037324e-03 2.52418385 2.585e-16 [18,] 1.041245e-03 2.52232224 7.005e-17 [19,] 1.045181e-03 2.52046071 2.087e-17 [20,] 1.049131e-03 2.51859926 5.52e-17 [21,] 1.053096e-03 2.51673789 2.175e-16 [22,] 1.057077e-03 2.51487659 1.455e-16 [23,] 1.061072e-03 2.51301538 1.371e-16 [24,] 1.065083e-03 2.51115425 -7.119e-17 [25,] 1.069108e-03 2.50929319 -3.203e-18 [26,] 1.073149e-03 2.50743222 -1.061e-16 [27,] 1.077206e-03 2.50557133 5.392e-17 [28,] 1.081277e-03 2.50371052 1.841e-16 [29,] 1.085364e-03 2.50184978 9.259e-17 [30,] 1.089466e-03 2.49998913 8.189e-17 [31,] 1.093584e-03 2.49812857 5.493e-17 [32,] 1.097718e-03 2.49626808 -3.044e-17 [33,] 1.101867e-03 2.49440767 -2.861e-16 [34,] 1.106031e-03 2.49254735 -7.993e-17 [35,] 1.110212e-03 2.49068711 6.438e-17 [36,] 1.114408e-03 2.48882695 6.849e-17 [37,] 1.118620e-03 2.48696687 -7.436e-17 [38,] 1.122848e-03 2.48510688 -6.001e-17 [39,] 1.127092e-03 2.48324697 2.464e-16 [40,] 1.131352e-03 2.48138715 2.368e-17 [41,] 1.135628e-03 2.47952741 6.221e-17 [42,] 1.139921e-03 2.47766775 6.605e-17 [43,] 1.144229e-03 2.47580818 6.717e-17 [44,] 1.148554e-03 2.47394869 -1.866e-16 [45,] 1.152895e-03 2.47208929 1.801e-16 [46,] 1.157253e-03 2.47022997 3.256e-16 [47,] 1.161627e-03 2.46837074 -1.514e-16 [48,] 1.166018e-03 2.46651159 -1.983e-18 [49,] 1.170425e-03 2.46465253 -1.39e-16 [50,] 1.174849e-03 2.46279355 1.634e-16 [51,] 1.179289e-03 2.46093467 8.901e-17 [52,] 1.183747e-03 2.45907586 1.956e-16 [53,] 1.188221e-03 2.45721715 3.932e-17 [54,] 1.192712e-03 2.45535852 2.802e-16 [55,] 1.197220e-03 2.45349998 -9.067e-18 [56,] 1.201745e-03 2.45164153 -1.149e-16 [57,] 1.206287e-03 2.44978317 4.78e-17 [58,] 1.210847e-03 2.44792489 -1.19e-16 [59,] 1.215423e-03 2.44606671 4.1e-17 [60,] 1.220017e-03 2.44420861 -2.046e-16 [61,] 1.224629e-03 2.44235060 -5.823e-17 [62,] 1.229257e-03 2.44049268 1.566e-16 [63,] 1.233903e-03 2.43863485 -1.991e-16 [64,] 1.238567e-03 2.43677711 7.107e-17 [65,] 1.243249e-03 2.43491947 -5.887e-17 [66,] 1.247948e-03 2.43306191 -1.285e-16 [67,] 1.252665e-03 2.43120444 -1.121e-16 [68,] 1.257399e-03 2.42934706 1.501e-16 [69,] 1.262152e-03 2.42748978 4.505e-17 [70,] 1.266922e-03 2.42563258 -4.205e-17 [71,] 1.271711e-03 2.42377548 1.292e-16 [72,] 1.276518e-03 2.42191847 -2.172e-17 [73,] 1.281342e-03 2.42006156 3.472e-16 [74,] 1.286186e-03 2.41820473 -1.962e-16 [75,] 1.291047e-03 2.41634800 -1.519e-16 [76,] 1.295927e-03 2.41449136 -1.752e-16 [77,] 1.300825e-03 2.41263482 -1.535e-17 [78,] 1.305742e-03 2.41077837 2.245e-17 [79,] 1.310677e-03 2.40892201 2.469e-16 [80,] 1.315631e-03 2.40706575 7.826e-17 [81,] 1.320604e-03 2.40520958 1.237e-16 [82,] 1.325595e-03 2.40335351 -1.321e-16 [83,] 1.330605e-03 2.40149754 1.9e-16 [84,] 1.335635e-03 2.39964166 -4.563e-17 [85,] 1.340683e-03 2.39778587 3.198e-17 [86,] 1.345750e-03 2.39593018 2.481e-16 [87,] 1.350837e-03 2.39407459 2.077e-16 [88,] 1.355943e-03 2.39221909 -7.773e-17 [89,] 1.361068e-03 2.39036370 4.031e-17 [90,] 1.366212e-03 2.38850839 1.41e-16 [91,] 1.371376e-03 2.38665319 1.129e-16 [92,] 1.376559e-03 2.38479809 1.782e-17 [93,] 1.381762e-03 2.38294308 -7.837e-17 [94,] 1.386985e-03 2.38108817 -6.103e-17 [95,] 1.392227e-03 2.37923336 -2.204e-18 [96,] 1.397489e-03 2.37737865 -3.985e-17 [97,] 1.402772e-03 2.37552404 9.959e-18 [98,] 1.408074e-03 2.37366953 4.462e-17 [99,] 1.413396e-03 2.37181512 9.567e-17 [100,] 1.418738e-03 2.36996081 2.97e-17 [101,] 1.424100e-03 2.36810660 5.213e-17 [102,] 1.429483e-03 2.36625249 -1.177e-16 [103,] 1.434886e-03 2.36439848 8.449e-17 [104,] 1.440309e-03 2.36254457 1.037e-16 [105,] 1.445753e-03 2.36069077 1.778e-16 [106,] 1.451218e-03 2.35883706 2.247e-17 [107,] 1.456703e-03 2.35698346 8.409e-17 [108,] 1.462209e-03 2.35512997 7.423e-17 [109,] 1.467736e-03 2.35327657 2.406e-16 [110,] 1.473283e-03 2.35142328 -1.224e-16 [111,] 1.478852e-03 2.34957010 -8.128e-17 [112,] 1.484441e-03 2.34771701 1.423e-16 [113,] 1.490052e-03 2.34586404 2.358e-16 [114,] 1.495684e-03 2.34401116 1.73e-16 [115,] 1.501337e-03 2.34215839 2.433e-17 [116,] 1.507012e-03 2.34030573 -1.479e-16 [117,] 1.512708e-03 2.33845317 1.394e-18 [118,] 1.518425e-03 2.33660072 2.797e-16 [119,] 1.524165e-03 2.33474838 9.285e-17 [120,] 1.529925e-03 2.33289614 -2.374e-17 [121,] 1.535708e-03 2.33104401 1.553e-16 [122,] 1.541513e-03 2.32919198 -5.306e-17 [123,] 1.547339e-03 2.32734006 -6.804e-17 [124,] 1.553188e-03 2.32548825 -5.164e-17 [125,] 1.559058e-03 2.32363655 -5.4e-17 [126,] 1.564951e-03 2.32178496 -2.546e-16 [127,] 1.570866e-03 2.31993348 9.653e-17 [128,] 1.576803e-03 2.31808210 1.293e-16 [129,] 1.582763e-03 2.31623084 -1.441e-16 [130,] 1.588746e-03 2.31437968 -8.2e-17 [131,] 1.594750e-03 2.31252864 -1.644e-16 [132,] 1.600778e-03 2.31067770 7.274e-17 [133,] 1.606829e-03 2.30882688 -1.791e-16 [134,] 1.612902e-03 2.30697617 -2.591e-16 [135,] 1.618998e-03 2.30512557 1.926e-16 [136,] 1.625118e-03 2.30327508 5.897e-17 [137,] 1.631260e-03 2.30142470 1.636e-16 [138,] 1.637426e-03 2.29957444 2.642e-16 [139,] 1.643615e-03 2.29772429 8.958e-17 [140,] 1.649827e-03 2.29587425 -5.138e-17 [141,] 1.656063e-03 2.29402432 2.726e-18 [142,] 1.662322e-03 2.29217451 1.624e-16 [143,] 1.668605e-03 2.29032482 2.081e-17 [144,] 1.674912e-03 2.28847524 -8.873e-17 [145,] 1.681243e-03 2.28662577 -1.437e-17 [146,] 1.687597e-03 2.28477642 2.161e-16 [147,] 1.693976e-03 2.28292718 2.451e-16 [148,] 1.700379e-03 2.28107806 1.237e-16 [149,] 1.706806e-03 2.27922906 8.671e-17 [150,] 1.713257e-03 2.27738017 1.924e-17 [151,] 1.719732e-03 2.27553140 -2.288e-16 [152,] 1.726232e-03 2.27368275 1.424e-16 [153,] 1.732757e-03 2.27183421 -6.027e-17 [154,] 1.739306e-03 2.26998579 2.736e-16 [155,] 1.745880e-03 2.26813749 -8.571e-18 [156,] 1.752479e-03 2.26628931 2.038e-17 [157,] 1.759103e-03 2.26444125 1.725e-16 [158,] 1.765752e-03 2.26259331 4.62e-17 [159,] 1.772426e-03 2.26074549 8.967e-17 [160,] 1.779125e-03 2.25889779 -1.87e-16 [161,] 1.785850e-03 2.25705021 2.779e-16 [162,] 1.792600e-03 2.25520275 4.373e-17 [163,] 1.799375e-03 2.25335541 7.847e-17 [164,] 1.806176e-03 2.25150819 1.403e-16 [165,] 1.813003e-03 2.24966110 4.483e-17 [166,] 1.819856e-03 2.24781412 -5.16e-17 [167,] 1.826734e-03 2.24596727 2.658e-16 [168,] 1.833639e-03 2.24412055 1.531e-16 [169,] 1.840569e-03 2.24227394 1.182e-16 [170,] 1.847526e-03 2.24042746 -1.273e-16 [171,] 1.854509e-03 2.23858111 1.501e-16 [172,] 1.861519e-03 2.23673487 8.684e-17 [173,] 1.868554e-03 2.23488877 6.754e-17 [174,] 1.875617e-03 2.23304279 -1.128e-16 [175,] 1.882706e-03 2.23119693 4.346e-17 [176,] 1.889822e-03 2.22935120 1.813e-16 [177,] 1.896965e-03 2.22750560 1.635e-16 [178,] 1.904135e-03 2.22566012 1.071e-16 [179,] 1.911332e-03 2.22381478 3.274e-16 [180,] 1.918557e-03 2.22196955 -8.211e-17 [181,] 1.925808e-03 2.22012446 5.732e-17 [182,] 1.933087e-03 2.21827950 8.192e-17 [183,] 1.940394e-03 2.21643466 -1.008e-16 [184,] 1.947728e-03 2.21458995 -1.671e-16 [185,] 1.955089e-03 2.21274537 -2.104e-17 [186,] 1.962479e-03 2.21090093 1.535e-16 [187,] 1.969897e-03 2.20905661 1.078e-16 [188,] 1.977342e-03 2.20721242 1.371e-16 [189,] 1.984816e-03 2.20536837 -2.04e-16 [190,] 1.992318e-03 2.20352444 2.151e-16 [191,] 1.999848e-03 2.20168065 -1.861e-16 [192,] 2.007407e-03 2.19983699 1.494e-16 [193,] 2.014995e-03 2.19799346 1.132e-16 [194,] 2.022611e-03 2.19615006 -1.717e-16 [195,] 2.030255e-03 2.19430680 2.281e-16 [196,] 2.037929e-03 2.19246367 2.363e-16 [197,] 2.045632e-03 2.19062068 2.262e-16 [198,] 2.053364e-03 2.18877782 -1.272e-17 [199,] 2.061125e-03 2.18693510 2.496e-16 [200,] 2.068915e-03 2.18509251 1.261e-16 [201,] 2.076735e-03 2.18325005 -6.126e-17 [202,] 2.084585e-03 2.18140774 5.53e-17 [203,] 2.092464e-03 2.17956556 2.26e-16 [204,] 2.100373e-03 2.17772351 -1.686e-16 [205,] 2.108311e-03 2.17588161 4.373e-17 [206,] 2.116280e-03 2.17403984 -9.225e-17 [207,] 2.124279e-03 2.17219821 1.872e-16 [208,] 2.132308e-03 2.17035672 1.467e-16 [209,] 2.140368e-03 2.16851536 -1.073e-16 [210,] 2.148457e-03 2.16667415 1.736e-16 [211,] 2.156578e-03 2.16483308 6.527e-17 [212,] 2.164729e-03 2.16299214 2.314e-16 [213,] 2.172911e-03 2.16115135 1.237e-16 [214,] 2.181124e-03 2.15931070 -1.756e-16 [215,] 2.189368e-03 2.15747019 2.711e-16 [216,] 2.197643e-03 2.15562982 1.188e-16 [217,] 2.205950e-03 2.15378960 -9.713e-17 [218,] 2.214287e-03 2.15194951 1.068e-16 [219,] 2.222657e-03 2.15010957 -5.873e-18 [220,] 2.231058e-03 2.14826978 2.034e-16 [221,] 2.239490e-03 2.14643012 1.031e-16 [222,] 2.247955e-03 2.14459062 2.195e-16 [223,] 2.256452e-03 2.14275125 -8.599e-18 [224,] 2.264980e-03 2.14091204 -1.438e-16 [225,] 2.273541e-03 2.13907296 1.433e-16 [226,] 2.282135e-03 2.13723404 1.483e-16 [227,] 2.290760e-03 2.13539526 1.834e-17 [228,] 2.299419e-03 2.13355663 -1.028e-16 [229,] 2.308110e-03 2.13171814 1.411e-16 [230,] 2.316834e-03 2.12987980 -1.209e-16 [231,] 2.325591e-03 2.12804162 -1.114e-16 [232,] 2.334381e-03 2.12620358 -7.032e-17 [233,] 2.343204e-03 2.12436569 7.023e-17 [234,] 2.352061e-03 2.12252794 6.216e-18 [235,] 2.360951e-03 2.12069035 -7.983e-17 [236,] 2.369874e-03 2.11885291 4.616e-17 [237,] 2.378832e-03 2.11701562 2.356e-16 [238,] 2.387823e-03 2.11517849 1.543e-16 [239,] 2.396848e-03 2.11334150 2.587e-16 [240,] 2.405907e-03 2.11150467 -9.167e-17 [241,] 2.415001e-03 2.10966798 -4.971e-17 [242,] 2.424129e-03 2.10783146 -4.516e-17 [243,] 2.433292e-03 2.10599508 1.246e-16 [244,] 2.442489e-03 2.10415886 2.32e-17 [245,] 2.451720e-03 2.10232280 -2.199e-16 [246,] 2.460987e-03 2.10048688 7.847e-17 [247,] 2.470289e-03 2.09865113 2.089e-16 [248,] 2.479626e-03 2.09681553 2.274e-16 [249,] 2.488998e-03 2.09498009 4.04e-17 [250,] 2.498406e-03 2.09314480 -2.338e-16 [251,] 2.507849e-03 2.09130967 -5.553e-17 [252,] 2.517328e-03 2.08947470 -4.654e-18 [253,] 2.526843e-03 2.08763989 1.603e-16 [254,] 2.536393e-03 2.08580523 -1.976e-16 [255,] 2.545980e-03 2.08397074 2.586e-16 [256,] 2.555603e-03 2.08213640 9.756e-17 [257,] 2.565263e-03 2.08030223 1.591e-16 [258,] 2.574958e-03 2.07846821 2.651e-16 [259,] 2.584691e-03 2.07663436 9.114e-17 [260,] 2.594460e-03 2.07480066 1.145e-16 [261,] 2.604267e-03 2.07296713 -6.184e-17 [262,] 2.614110e-03 2.07113377 -1.977e-16 [263,] 2.623990e-03 2.06930056 2.149e-17 [264,] 2.633908e-03 2.06746752 1.831e-16 [265,] 2.643864e-03 2.06563464 -2.117e-17 [266,] 2.653857e-03 2.06380193 -2.172e-16 [267,] 2.663887e-03 2.06196938 -4.925e-17 [268,] 2.673956e-03 2.06013699 -1.836e-16 [269,] 2.684063e-03 2.05830478 -1.418e-16 [270,] 2.694208e-03 2.05647272 -1.394e-16 [271,] 2.704391e-03 2.05464084 1.624e-16 [272,] 2.714613e-03 2.05280912 -5.128e-17 [273,] 2.724873e-03 2.05097757 1.935e-16 [274,] 2.735172e-03 2.04914619 -6.811e-17 [275,] 2.745511e-03 2.04731498 -1.034e-16 [276,] 2.755888e-03 2.04548393 1.337e-16 [277,] 2.766304e-03 2.04365306 2.121e-16 [278,] 2.776760e-03 2.04182235 3.608e-16 [279,] 2.787255e-03 2.03999182 1.898e-16 [280,] 2.797790e-03 2.03816146 1.461e-16 [281,] 2.808365e-03 2.03633127 -1.258e-16 [282,] 2.818980e-03 2.03450125 -4.698e-18 [283,] 2.829635e-03 2.03267140 2.759e-16 [284,] 2.840330e-03 2.03084173 1.781e-17 [285,] 2.851065e-03 2.02901223 1.557e-16 [286,] 2.861841e-03 2.02718291 1.138e-16 [287,] 2.872658e-03 2.02535375 2.081e-16 [288,] 2.883516e-03 2.02352478 4.027e-16 [289,] 2.894415e-03 2.02169598 3.325e-17 [290,] 2.905355e-03 2.01986736 -1.433e-16 [291,] 2.916336e-03 2.01803891 -9.769e-17 [292,] 2.927359e-03 2.01621064 3.246e-16 [293,] 2.938424e-03 2.01438255 1.564e-16 [294,] 2.949530e-03 2.01255464 -3.331e-17 [295,] 2.960678e-03 2.01072690 -1.822e-16 [296,] 2.971869e-03 2.00889935 2.084e-16 [297,] 2.983102e-03 2.00707197 2.218e-16 [298,] 2.994377e-03 2.00524478 -8.978e-19 [299,] 3.005695e-03 2.00341776 2.465e-16 [300,] 3.017055e-03 2.00159093 1.481e-17 [301,] 3.028459e-03 1.99976428 1.065e-16 [302,] 3.039905e-03 1.99793781 1.245e-16 [303,] 3.051395e-03 1.99611152 3.216e-17 [304,] 3.062929e-03 1.99428542 7.585e-17 [305,] 3.074505e-03 1.99245950 6.813e-17 [306,] 3.086126e-03 1.99063377 -3.242e-17 [307,] 3.097791e-03 1.98880822 3.75e-16 [308,] 3.109499e-03 1.98698286 -5.296e-17 [309,] 3.121252e-03 1.98515768 -8.47e-17 [310,] 3.133050e-03 1.98333269 1.521e-16 [311,] 3.144892e-03 1.98150789 2.582e-16 [312,] 3.156779e-03 1.97968327 -4.956e-18 [313,] 3.168710e-03 1.97785885 3.959e-16 [314,] 3.180687e-03 1.97603461 4.859e-17 [315,] 3.192709e-03 1.97421056 2.662e-16 [316,] 3.204776e-03 1.97238670 1.533e-16 [317,] 3.216889e-03 1.97056303 2.024e-16 [318,] 3.229048e-03 1.96873956 -2.021e-16 [319,] 3.241253e-03 1.96691627 -7.891e-17 [320,] 3.253504e-03 1.96509318 -9.417e-17 [321,] 3.265801e-03 1.96327028 3.964e-17 [322,] 3.278145e-03 1.96144757 1.157e-17 [323,] 3.290535e-03 1.95962506 -1.014e-17 [324,] 3.302973e-03 1.95780274 2.091e-16 [325,] 3.315457e-03 1.95598061 1.306e-16 [326,] 3.327988e-03 1.95415869 -2.115e-16 [327,] 3.340567e-03 1.95233695 1.977e-16 [328,] 3.353193e-03 1.95051542 7.255e-17 [329,] 3.365867e-03 1.94869408 2.64e-16 [330,] 3.378589e-03 1.94687294 -1.724e-17 [331,] 3.391359e-03 1.94505199 1.519e-16 [332,] 3.404178e-03 1.94323125 5.347e-17 [333,] 3.417044e-03 1.94141071 9.937e-17 [334,] 3.429960e-03 1.93959036 -3.046e-16 [335,] 3.442924e-03 1.93777022 1.635e-16 [336,] 3.455937e-03 1.93595027 -1.312e-16 [337,] 3.469000e-03 1.93413053 1.467e-16 [338,] 3.482111e-03 1.93231099 3.237e-16 [339,] 3.495273e-03 1.93049166 1.325e-16 [340,] 3.508484e-03 1.92867253 -1.412e-17 [341,] 3.521745e-03 1.92685360 -8.651e-17 [342,] 3.535056e-03 1.92503487 -1.047e-16 [343,] 3.548417e-03 1.92321636 1.903e-16 [344,] 3.561829e-03 1.92139804 -9.04e-17 [345,] 3.575292e-03 1.91957994 2.385e-16 [346,] 3.588805e-03 1.91776204 1.873e-16 [347,] 3.602370e-03 1.91594435 -5.358e-17 [348,] 3.615986e-03 1.91412686 2.379e-17 [349,] 3.629653e-03 1.91230959 3.199e-16 [350,] 3.643372e-03 1.91049252 -6.018e-17 [351,] 3.657143e-03 1.90867567 -4.374e-17 [352,] 3.670966e-03 1.90685903 3.585e-16 [353,] 3.684841e-03 1.90504259 2.838e-16 [354,] 3.698768e-03 1.90322637 -1.277e-16 [355,] 3.712749e-03 1.90141036 1.327e-16 [356,] 3.726782e-03 1.89959457 -1.992e-16 [357,] 3.740868e-03 1.89777898 -3.526e-16 [358,] 3.755007e-03 1.89596361 -1.108e-16 [359,] 3.769200e-03 1.89414846 1.391e-16 [360,] 3.783446e-03 1.89233352 2.236e-17 [361,] 3.797747e-03 1.89051880 2.001e-16 [362,] 3.812101e-03 1.88870430 1.663e-16 [363,] 3.826509e-03 1.88689001 1.32e-16 [364,] 3.840972e-03 1.88507594 -2.075e-16 [365,] 3.855490e-03 1.88326209 1.826e-16 [366,] 3.870063e-03 1.88144845 6.587e-17 [367,] 3.884690e-03 1.87963504 2.469e-16 [368,] 3.899373e-03 1.87782185 2.804e-16 [369,] 3.914112e-03 1.87600888 1.155e-16 [370,] 3.928906e-03 1.87419613 -3.873e-17 [371,] 3.943756e-03 1.87238360 -5.976e-18 [372,] 3.958662e-03 1.87057130 -1.343e-17 [373,] 3.973625e-03 1.86875921 -6.61e-17 [374,] 3.988644e-03 1.86694736 2.786e-17 [375,] 4.003720e-03 1.86513573 -6.434e-17 [376,] 4.018852e-03 1.86332432 5.471e-17 [377,] 4.034042e-03 1.86151314 4.327e-17 [378,] 4.049290e-03 1.85970218 -4.283e-17 [379,] 4.064595e-03 1.85789146 -1.353e-16 [380,] 4.079958e-03 1.85608096 -2.051e-16 [381,] 4.095379e-03 1.85427069 2.339e-17 [382,] 4.110858e-03 1.85246065 1.107e-16 [383,] 4.126396e-03 1.85065084 -4.829e-17 [384,] 4.141992e-03 1.84884126 1.913e-16 [385,] 4.157648e-03 1.84703191 1.505e-16 [386,] 4.173362e-03 1.84522279 -1.906e-17 [387,] 4.189137e-03 1.84341391 -4.346e-17 [388,] 4.204970e-03 1.84160526 3.287e-16 [389,] 4.220864e-03 1.83979684 1.397e-17 [390,] 4.236817e-03 1.83798866 -2.088e-16 [391,] 4.252831e-03 1.83618071 3.107e-17 [392,] 4.268905e-03 1.83437300 -1.257e-16 [393,] 4.285041e-03 1.83256553 -6.497e-17 [394,] 4.301237e-03 1.83075829 -3.361e-18 [395,] 4.317494e-03 1.82895129 3.592e-16 [396,] 4.333813e-03 1.82714453 -5.208e-17 [397,] 4.350193e-03 1.82533801 -2.465e-17 [398,] 4.366636e-03 1.82353172 8.168e-17 [399,] 4.383140e-03 1.82172568 4.016e-17 [400,] 4.399707e-03 1.81991988 2.921e-16 [401,] 4.416337e-03 1.81811432 6.768e-17 [402,] 4.433029e-03 1.81630901 1.374e-16 [403,] 4.449785e-03 1.81450394 -4.782e-18 [404,] 4.466604e-03 1.81269911 6.666e-17 [405,] 4.483486e-03 1.81089452 2.687e-16 [406,] 4.500432e-03 1.80909018 6.054e-17 [407,] 4.517442e-03 1.80728609 -5.093e-17 [408,] 4.534517e-03 1.80548225 4.235e-17 [409,] 4.551656e-03 1.80367865 -1.033e-16 [410,] 4.568860e-03 1.80187530 2.245e-17 [411,] 4.586129e-03 1.80007220 1.826e-16 [412,] 4.603463e-03 1.79826934 1.82e-16 [413,] 4.620863e-03 1.79646674 7.082e-17 [414,] 4.638328e-03 1.79466439 -1.359e-16 [415,] 4.655859e-03 1.79286229 1.761e-16 [416,] 4.673457e-03 1.79106044 8.424e-17 [417,] 4.691121e-03 1.78925885 2.106e-16 [418,] 4.708852e-03 1.78745751 2.791e-16 [419,] 4.726650e-03 1.78565642 3.723e-16 [420,] 4.744516e-03 1.78385559 1.188e-16 [421,] 4.762449e-03 1.78205502 -2.69e-17 [422,] 4.780449e-03 1.78025470 5.636e-17 [423,] 4.798518e-03 1.77845464 6.479e-17 [424,] 4.816655e-03 1.77665484 2.188e-16 [425,] 4.834860e-03 1.77485529 1.656e-16 [426,] 4.853134e-03 1.77305601 1.653e-16 [427,] 4.871478e-03 1.77125698 -1.804e-16 [428,] 4.889890e-03 1.76945822 -8.104e-17 [429,] 4.908373e-03 1.76765972 -1.069e-16 [430,] 4.926925e-03 1.76586148 -1.248e-16 [431,] 4.945547e-03 1.76406350 1.61e-16 [432,] 4.964240e-03 1.76226579 -8.503e-17 [433,] 4.983003e-03 1.76046834 5.882e-17 [434,] 5.001837e-03 1.75867116 1.612e-16 [435,] 5.020743e-03 1.75687424 2.382e-17 [436,] 5.039720e-03 1.75507759 -5.95e-17 [437,] 5.058768e-03 1.75328121 1.833e-16 [438,] 5.077889e-03 1.75148509 3.255e-16 [439,] 5.097082e-03 1.74968925 3.672e-16 [440,] 5.116347e-03 1.74789367 3.087e-16 [441,] 5.135685e-03 1.74609837 2.123e-16 [442,] 5.155097e-03 1.74430333 1.358e-16 [443,] 5.174581e-03 1.74250857 5.203e-17 [444,] 5.194140e-03 1.74071408 1.072e-16 [445,] 5.213772e-03 1.73891987 -2.38e-17 [446,] 5.233478e-03 1.73712593 -2.765e-17 [447,] 5.253259e-03 1.73533226 7.896e-17 [448,] 5.273115e-03 1.73353887 8.885e-17 [449,] 5.293046e-03 1.73174576 5.681e-17 [450,] 5.313052e-03 1.72995292 9.16e-17 [451,] 5.333134e-03 1.72816036 -1.43e-17 [452,] 5.353291e-03 1.72636808 4.654e-17 [453,] 5.373525e-03 1.72457608 2.165e-16 [454,] 5.393835e-03 1.72278436 9.865e-19 [455,] 5.414222e-03 1.72099292 -1.586e-16 [456,] 5.434686e-03 1.71920177 3.204e-16 [457,] 5.455228e-03 1.71741089 1.071e-16 [458,] 5.475847e-03 1.71562030 1.345e-16 [459,] 5.496544e-03 1.71383000 2.378e-16 [460,] 5.517319e-03 1.71203998 1.202e-16 [461,] 5.538173e-03 1.71025024 -1.927e-16 [462,] 5.559105e-03 1.70846080 2.546e-16 [463,] 5.580117e-03 1.70667163 2.019e-16 [464,] 5.601208e-03 1.70488276 1.081e-16 [465,] 5.622379e-03 1.70309418 2.328e-16 [466,] 5.643630e-03 1.70130589 2.729e-17 [467,] 5.664961e-03 1.69951788 2.723e-16 [468,] 5.686373e-03 1.69773017 3.911e-17 [469,] 5.707866e-03 1.69594275 -1.796e-16 [470,] 5.729440e-03 1.69415563 8.318e-17 [471,] 5.751095e-03 1.69236879 9.601e-17 [472,] 5.772833e-03 1.69058226 6.366e-17 [473,] 5.794652e-03 1.68879601 1.969e-16 [474,] 5.816554e-03 1.68701007 1.629e-16 [475,] 5.838539e-03 1.68522442 2.887e-16 [476,] 5.860607e-03 1.68343907 -1.772e-16 [477,] 5.882758e-03 1.68165402 2.148e-16 [478,] 5.904993e-03 1.67986926 1.374e-16 [479,] 5.927312e-03 1.67808481 -2.346e-17 [480,] 5.949716e-03 1.67630066 -1.709e-16 [481,] 5.972204e-03 1.67451681 -4.078e-17 [482,] 5.994777e-03 1.67273327 3.316e-16 [483,] 6.017435e-03 1.67095002 1.197e-16 [484,] 6.040179e-03 1.66916708 1.061e-16 [485,] 6.063009e-03 1.66738445 -5.39e-17 [486,] 6.085926e-03 1.66560213 1.123e-16 [487,] 6.108929e-03 1.66382011 1.45e-17 [488,] 6.132018e-03 1.66203839 -9.849e-17 [489,] 6.155196e-03 1.66025699 1.622e-16 [490,] 6.178460e-03 1.65847590 1.174e-16 [491,] 6.201813e-03 1.65669512 -2.678e-17 [492,] 6.225254e-03 1.65491464 7.336e-17 [493,] 6.248784e-03 1.65313448 -1.372e-16 [494,] 6.272402e-03 1.65135464 1.272e-16 [495,] 6.296110e-03 1.64957510 5.059e-17 [496,] 6.319907e-03 1.64779589 6.548e-19 [497,] 6.343794e-03 1.64601698 -2.15e-16 [498,] 6.367772e-03 1.64423840 -2.728e-17 [499,] 6.391840e-03 1.64246013 3.687e-16 [500,] 6.415999e-03 1.64068218 1.088e-16 [501,] 6.440250e-03 1.63890454 -2.59e-17 [502,] 6.464592e-03 1.63712723 -2.046e-16 [503,] 6.489026e-03 1.63535024 1.688e-17 [504,] 6.513553e-03 1.63357357 3.153e-16 [505,] 6.538172e-03 1.63179722 -2.319e-16 [506,] 6.562884e-03 1.63002120 2.205e-16 [507,] 6.587690e-03 1.62824550 3.583e-16 [508,] 6.612589e-03 1.62647012 -1.27e-16 [509,] 6.637583e-03 1.62469507 7.142e-17 [510,] 6.662671e-03 1.62292035 -2.3e-16 [511,] 6.687854e-03 1.62114595 1.685e-16 [512,] 6.713132e-03 1.61937189 -2.673e-16 [513,] 6.738506e-03 1.61759815 -3.475e-16 [514,] 6.763975e-03 1.61582474 1.038e-16 [515,] 6.789541e-03 1.61405167 -1.281e-16 [516,] 6.815203e-03 1.61227892 -2.674e-16 [517,] 6.840963e-03 1.61050651 -2.174e-16 [518,] 6.866819e-03 1.60873444 1.74e-16 [519,] 6.892774e-03 1.60696270 -7.034e-17 [520,] 6.918826e-03 1.60519129 2.157e-16 [521,] 6.944977e-03 1.60342022 1.743e-16 [522,] 6.971227e-03 1.60164949 3.762e-16 [523,] 6.997576e-03 1.59987910 -4.374e-16 [524,] 7.024025e-03 1.59810904 4.116e-16 [525,] 7.050574e-03 1.59633933 1.149e-17 [526,] 7.077223e-03 1.59456996 4.082e-17 [527,] 7.103972e-03 1.59280093 8.208e-17 [528,] 7.130823e-03 1.59103224 1.319e-17 [529,] 7.157776e-03 1.58926390 1.1e-16 [530,] 7.184830e-03 1.58749590 8.024e-17 [531,] 7.211986e-03 1.58572825 5.156e-16 [532,] 7.239245e-03 1.58396094 -2.053e-16 [533,] 7.266607e-03 1.58219399 1.571e-16 [534,] 7.294073e-03 1.58042738 1.42e-16 [535,] 7.321642e-03 1.57866112 -1.058e-16 [536,] 7.349316e-03 1.57689521 -1.092e-16 [537,] 7.377094e-03 1.57512965 3.898e-17 [538,] 7.404977e-03 1.57336445 -1.01e-16 [539,] 7.432966e-03 1.57159960 -1.33e-16 [540,] 7.461060e-03 1.56983510 2.569e-16 [541,] 7.489261e-03 1.56807096 1.212e-16 [542,] 7.517568e-03 1.56630717 3.132e-16 [543,] 7.545982e-03 1.56454374 2.6e-16 [544,] 7.574503e-03 1.56278067 5.494e-17 [545,] 7.603133e-03 1.56101796 -1.148e-17 [546,] 7.631870e-03 1.55925561 1.612e-16 [547,] 7.660716e-03 1.55749362 -1.756e-17 [548,] 7.689671e-03 1.55573199 1.936e-16 [549,] 7.718736e-03 1.55397072 1.614e-16 [550,] 7.747910e-03 1.55220982 -1.398e-16 [551,] 7.777195e-03 1.55044928 6.792e-17 [552,] 7.806590e-03 1.54868911 4.821e-17 [553,] 7.836097e-03 1.54692930 2.076e-16 [554,] 7.865715e-03 1.54516987 1.793e-16 [555,] 7.895445e-03 1.54341080 1.511e-16 [556,] 7.925287e-03 1.54165210 1.792e-16 [557,] 7.955243e-03 1.53989377 -4.961e-17 [558,] 7.985311e-03 1.53813582 -2.94e-17 [559,] 8.015493e-03 1.53637823 -2.002e-16 [560,] 8.045789e-03 1.53462102 1.446e-16 [561,] 8.076200e-03 1.53286419 2.764e-16 [562,] 8.106725e-03 1.53110773 -1.602e-16 [563,] 8.137366e-03 1.52935164 -1.169e-16 [564,] 8.168123e-03 1.52759594 6.352e-17 [565,] 8.198996e-03 1.52584061 2.119e-16 [566,] 8.229986e-03 1.52408566 -1.009e-16 [567,] 8.261092e-03 1.52233110 7.477e-17 [568,] 8.292317e-03 1.52057691 -7.588e-17 [569,] 8.323659e-03 1.51882311 2.401e-16 [570,] 8.355120e-03 1.51706969 9.724e-17 [571,] 8.386700e-03 1.51531666 2.54e-16 [572,] 8.418399e-03 1.51356401 1.416e-16 [573,] 8.450218e-03 1.51181175 -6.935e-17 [574,] 8.482157e-03 1.51005987 1.685e-16 [575,] 8.514217e-03 1.50830839 1.946e-17 [576,] 8.546398e-03 1.50655729 8.362e-17 [577,] 8.578701e-03 1.50480659 4.217e-16 [578,] 8.611126e-03 1.50305627 1.08e-16 [579,] 8.643673e-03 1.50130635 -1.594e-16 [580,] 8.676344e-03 1.49955683 3.531e-16 [581,] 8.709138e-03 1.49780770 -2.658e-16 [582,] 8.742055e-03 1.49605896 2.11e-16 [583,] 8.775098e-03 1.49431062 5.539e-17 [584,] 8.808265e-03 1.49256268 -6.747e-17 [585,] 8.841557e-03 1.49081514 1.01e-16 [586,] 8.874976e-03 1.48906800 2.763e-16 [587,] 8.908521e-03 1.48732126 5.047e-17 [588,] 8.942192e-03 1.48557492 -2.38e-17 [589,] 8.975991e-03 1.48382899 1.953e-16 [590,] 9.009917e-03 1.48208346 9.382e-17 [591,] 9.043972e-03 1.48033833 2.259e-16 [592,] 9.078155e-03 1.47859362 1.857e-16 [593,] 9.112468e-03 1.47684931 3.169e-16 [594,] 9.146910e-03 1.47510540 -1.724e-16 [595,] 9.181483e-03 1.47336191 -2.126e-16 [596,] 9.216186e-03 1.47161883 3.6e-17 [597,] 9.251020e-03 1.46987616 3.19e-19 [598,] 9.285986e-03 1.46813390 5.216e-17 [599,] 9.321085e-03 1.46639206 8.144e-17 [600,] 9.356315e-03 1.46465063 -1.558e-16 [601,] 9.391679e-03 1.46290962 2.198e-16 [602,] 9.427177e-03 1.46116903 2.45e-16 [603,] 9.462809e-03 1.45942885 9.721e-17 [604,] 9.498575e-03 1.45768910 -1.357e-17 [605,] 9.534477e-03 1.45594976 2.227e-16 [606,] 9.570515e-03 1.45421084 3.217e-17 [607,] 9.606688e-03 1.45247235 5.932e-16 [608,] 9.642998e-03 1.45073428 -5.335e-17 [609,] 9.679446e-03 1.44899664 1.384e-16 [610,] 9.716031e-03 1.44725942 3.561e-17 [611,] 9.752755e-03 1.44552263 1.566e-16 [612,] 9.789617e-03 1.44378627 2.528e-16 [613,] 9.826619e-03 1.44205034 -2.142e-17 [614,] 9.863761e-03 1.44031484 -3.65e-17 [615,] 9.901043e-03 1.43857977 -3.852e-16 [616,] 9.938466e-03 1.43684513 -3.715e-16 [617,] 9.976030e-03 1.43511092 2.862e-16 [618,] 1.001374e-02 1.43337715 1.095e-16 [619,] 1.005159e-02 1.43164382 2.162e-17 [620,] 1.008958e-02 1.42991092 -2.846e-17 [621,] 1.012771e-02 1.42817846 3.305e-16 [622,] 1.016599e-02 1.42644644 2.019e-16 [623,] 1.020442e-02 1.42471487 2.465e-17 [624,] 1.024299e-02 1.42298373 2.498e-16 [625,] 1.028170e-02 1.42125304 -1.65e-16 [626,] 1.032056e-02 1.41952278 -1.995e-16 [627,] 1.035957e-02 1.41779298 6.819e-17 [628,] 1.039873e-02 1.41606362 2.609e-16 [629,] 1.043803e-02 1.41433471 2.878e-16 [630,] 1.047748e-02 1.41260625 2.554e-16 [631,] 1.051709e-02 1.41087823 2.773e-16 [632,] 1.055684e-02 1.40915067 7.506e-18 [633,] 1.059674e-02 1.40742356 1.275e-16 [634,] 1.063679e-02 1.40569690 -6.069e-17 [635,] 1.067700e-02 1.40397070 -2.064e-16 [636,] 1.071735e-02 1.40224495 -1.346e-16 [637,] 1.075786e-02 1.40051966 7.215e-17 [638,] 1.079852e-02 1.39879483 -1.052e-17 [639,] 1.083934e-02 1.39707045 -6.18e-17 [640,] 1.088031e-02 1.39534654 -1.175e-16 [641,] 1.092143e-02 1.39362308 5.702e-17 [642,] 1.096271e-02 1.39190009 2.288e-16 [643,] 1.100414e-02 1.39017757 3.261e-16 [644,] 1.104574e-02 1.38845550 -2.285e-17 [645,] 1.108749e-02 1.38673391 -2.999e-16 [646,] 1.112939e-02 1.38501278 -1.789e-16 [647,] 1.117146e-02 1.38329212 4.602e-16 [648,] 1.121368e-02 1.38157193 2.06e-16 [649,] 1.125607e-02 1.37985221 1.185e-16 [650,] 1.129861e-02 1.37813296 -9.866e-17 [651,] 1.134132e-02 1.37641418 2.251e-16 [652,] 1.138418e-02 1.37469588 2.35e-16 [653,] 1.142721e-02 1.37297806 1.631e-16 [654,] 1.147040e-02 1.37126071 8.115e-17 [655,] 1.151376e-02 1.36954384 4.873e-16 [656,] 1.155728e-02 1.36782745 -2.05e-16 [657,] 1.160096e-02 1.36611154 -1.362e-16 [658,] 1.164481e-02 1.36439611 -8.043e-17 [659,] 1.168882e-02 1.36268116 -5.902e-17 [660,] 1.173300e-02 1.36096670 7.746e-17 [661,] 1.177735e-02 1.35925273 4.147e-16 [662,] 1.182186e-02 1.35753924 -5.048e-17 [663,] 1.186655e-02 1.35582623 1.886e-17 [664,] 1.191140e-02 1.35411372 4.976e-17 [665,] 1.195642e-02 1.35240170 3.39e-17 [666,] 1.200161e-02 1.35069017 -3.223e-16 [667,] 1.204698e-02 1.34897913 -8.152e-18 [668,] 1.209251e-02 1.34726858 4.033e-16 [669,] 1.213822e-02 1.34555853 1.386e-16 [670,] 1.218409e-02 1.34384898 7.758e-17 [671,] 1.223015e-02 1.34213992 -2.902e-16 [672,] 1.227637e-02 1.34043137 -3.669e-17 [673,] 1.232277e-02 1.33872331 -1.038e-16 [674,] 1.236935e-02 1.33701575 -5.706e-17 [675,] 1.241610e-02 1.33530870 1.31e-18 [676,] 1.246303e-02 1.33360215 -2.919e-17 [677,] 1.251014e-02 1.33189611 -4.11e-17 [678,] 1.255742e-02 1.33019057 1.217e-16 [679,] 1.260488e-02 1.32848554 1.323e-16 [680,] 1.265253e-02 1.32678102 -2.068e-17 [681,] 1.270035e-02 1.32507701 4.353e-16 [682,] 1.274835e-02 1.32337351 -2.511e-16 [683,] 1.279654e-02 1.32167053 4.24e-16 [684,] 1.284491e-02 1.31996806 5.861e-17 [685,] 1.289346e-02 1.31826610 1.095e-16 [686,] 1.294219e-02 1.31656466 -8.741e-17 [687,] 1.299111e-02 1.31486374 -2.044e-16 [688,] 1.304021e-02 1.31316334 1.995e-16 [689,] 1.308950e-02 1.31146346 -1.131e-16 [690,] 1.313897e-02 1.30976410 -3.64e-16 [691,] 1.318863e-02 1.30806526 2.592e-16 [692,] 1.323848e-02 1.30636695 1.282e-16 [693,] 1.328852e-02 1.30466916 1.229e-16 [694,] 1.333874e-02 1.30297190 -7.337e-17 [695,] 1.338916e-02 1.30127517 -5.638e-18 [696,] 1.343977e-02 1.29957897 -1.806e-16 [697,] 1.349057e-02 1.29788330 1.837e-16 [698,] 1.354156e-02 1.29618816 -1.896e-16 [699,] 1.359274e-02 1.29449356 -5.237e-17 [700,] 1.364412e-02 1.29279949 -1.62e-16 [701,] 1.369569e-02 1.29110596 2.181e-16 [702,] 1.374745e-02 1.28941296 1.264e-16 [703,] 1.379941e-02 1.28772050 3.039e-16 [704,] 1.385157e-02 1.28602859 4.3e-16 [705,] 1.390393e-02 1.28433721 1.454e-16 [706,] 1.395648e-02 1.28264638 2.219e-16 [707,] 1.400923e-02 1.28095609 -2.006e-16 [708,] 1.406218e-02 1.27926635 -9.542e-17 [709,] 1.411533e-02 1.27757715 2.972e-16 [710,] 1.416868e-02 1.27588851 9.469e-17 [711,] 1.422224e-02 1.27420041 2.569e-16 [712,] 1.427599e-02 1.27251286 2.483e-16 [713,] 1.432995e-02 1.27082587 1.678e-17 [714,] 1.438411e-02 1.26913943 4.388e-16 [715,] 1.443848e-02 1.26745354 2.004e-16 [716,] 1.449305e-02 1.26576821 6.583e-17 [717,] 1.454783e-02 1.26408344 2.787e-16 [718,] 1.460282e-02 1.26239923 -2.361e-17 [719,] 1.465801e-02 1.26071557 1.279e-16 [720,] 1.471342e-02 1.25903248 -1.021e-16 [721,] 1.476903e-02 1.25734996 -3.377e-16 [722,] 1.482485e-02 1.25566799 3.754e-17 [723,] 1.488088e-02 1.25398660 5.533e-17 [724,] 1.493713e-02 1.25230577 6.262e-17 [725,] 1.499359e-02 1.25062551 3.647e-16 [726,] 1.505026e-02 1.24894581 2.588e-16 [727,] 1.510714e-02 1.24726669 -3.085e-17 [728,] 1.516424e-02 1.24558815 5.087e-16 [729,] 1.522156e-02 1.24391018 -1.303e-16 [730,] 1.527909e-02 1.24223278 3.216e-16 [731,] 1.533684e-02 1.24055596 1.974e-17 [732,] 1.539481e-02 1.23887972 -1.756e-16 [733,] 1.545300e-02 1.23720406 2.351e-16 [734,] 1.551141e-02 1.23552898 3.45e-16 [735,] 1.557003e-02 1.23385448 1.877e-16 [736,] 1.562888e-02 1.23218057 -9.5e-18 [737,] 1.568796e-02 1.23050724 -3.705e-16 [738,] 1.574725e-02 1.22883450 6.087e-18 [739,] 1.580677e-02 1.22716234 6.078e-17 [740,] 1.586652e-02 1.22549078 -2.603e-16 [741,] 1.592649e-02 1.22381981 -5.619e-16 [742,] 1.598668e-02 1.22214943 -3.593e-17 [743,] 1.604711e-02 1.22047964 3.795e-17 [744,] 1.610776e-02 1.21881045 2.301e-16 [745,] 1.616865e-02 1.21714186 -1.507e-16 [746,] 1.622976e-02 1.21547386 3.034e-16 [747,] 1.629110e-02 1.21380647 1.415e-16 [748,] 1.635268e-02 1.21213967 -7.267e-17 [749,] 1.641448e-02 1.21047348 2.072e-16 [750,] 1.647653e-02 1.20880789 -2.05e-16 [751,] 1.653880e-02 1.20714291 4.594e-16 [752,] 1.660131e-02 1.20547854 -3.151e-16 [753,] 1.666406e-02 1.20381477 -2.399e-16 [754,] 1.672705e-02 1.20215161 -2.717e-16 [755,] 1.679027e-02 1.20048907 -4.487e-17 [756,] 1.685373e-02 1.19882713 -2.03e-16 [757,] 1.691743e-02 1.19716581 -2.305e-16 [758,] 1.698138e-02 1.19550511 1.991e-16 [759,] 1.704556e-02 1.19384502 -9.903e-17 [760,] 1.710999e-02 1.19218555 3.098e-16 [761,] 1.717466e-02 1.19052671 -2.742e-16 [762,] 1.723957e-02 1.18886848 3.201e-16 [763,] 1.730473e-02 1.18721088 -5.156e-17 [764,] 1.737014e-02 1.18555390 -2.186e-16 [765,] 1.743579e-02 1.18389754 -7.142e-17 [766,] 1.750170e-02 1.18224182 1.351e-16 [767,] 1.756785e-02 1.18058672 -3.539e-16 [768,] 1.763425e-02 1.17893225 4.466e-16 [769,] 1.770090e-02 1.17727842 1.592e-16 [770,] 1.776780e-02 1.17562522 -2.459e-17 [771,] 1.783496e-02 1.17397265 1.217e-16 [772,] 1.790237e-02 1.17232072 2.581e-16 [773,] 1.797004e-02 1.17066943 1.641e-16 [774,] 1.803796e-02 1.16901878 -1.044e-16 [775,] 1.810614e-02 1.16736876 -2.073e-16 [776,] 1.817457e-02 1.16571939 -9.427e-17 [777,] 1.824327e-02 1.16407067 7.067e-17 [778,] 1.831222e-02 1.16242259 1.094e-16 [779,] 1.838144e-02 1.16077515 1.394e-16 [780,] 1.845091e-02 1.15912837 2.175e-16 [781,] 1.852065e-02 1.15748223 2.238e-16 [782,] 1.859065e-02 1.15583675 2.797e-17 [783,] 1.866092e-02 1.15419192 1.626e-16 [784,] 1.873145e-02 1.15254774 2.977e-16 [785,] 1.880225e-02 1.15090422 1.428e-16 [786,] 1.887332e-02 1.14926136 -3.396e-16 [787,] 1.894465e-02 1.14761915 1.481e-16 [788,] 1.901626e-02 1.14597761 -1.291e-16 [789,] 1.908813e-02 1.14433673 -3.605e-16 [790,] 1.916028e-02 1.14269651 3.592e-16 [791,] 1.923270e-02 1.14105696 6.478e-17 [792,] 1.930539e-02 1.13941807 6.849e-18 [793,] 1.937836e-02 1.13777986 3.299e-17 [794,] 1.945161e-02 1.13614231 2.169e-17 [795,] 1.952513e-02 1.13450543 3.204e-16 [796,] 1.959893e-02 1.13286923 3.639e-16 [797,] 1.967301e-02 1.13123370 -2.263e-16 [798,] 1.974736e-02 1.12959885 -3.923e-17 [799,] 1.982200e-02 1.12796467 -1.036e-17 [800,] 1.989692e-02 1.12633118 3.351e-16 [801,] 1.997213e-02 1.12469836 -2.13e-16 [802,] 2.004762e-02 1.12306623 1.766e-16 [803,] 2.012339e-02 1.12143478 -5.677e-16 [804,] 2.019945e-02 1.11980402 3.921e-16 [805,] 2.027580e-02 1.11817394 -4.674e-16 [806,] 2.035243e-02 1.11654456 1.623e-16 [807,] 2.042936e-02 1.11491586 4.969e-16 [808,] 2.050658e-02 1.11328785 -3.085e-16 [809,] 2.058409e-02 1.11166054 -4.793e-16 [810,] 2.066189e-02 1.11003392 3.527e-16 [811,] 2.073998e-02 1.10840800 3.343e-17 [812,] 2.081837e-02 1.10678278 1.727e-16 [813,] 2.089706e-02 1.10515826 -9.765e-17 [814,] 2.097604e-02 1.10353444 4.181e-16 [815,] 2.105533e-02 1.10191132 1.805e-17 [816,] 2.113491e-02 1.10028891 1.357e-16 [817,] 2.121479e-02 1.09866720 1.469e-16 [818,] 2.129498e-02 1.09704620 5.007e-17 [819,] 2.137547e-02 1.09542591 2.231e-16 [820,] 2.145626e-02 1.09380633 -4.999e-16 [821,] 2.153736e-02 1.09218746 2.177e-16 [822,] 2.161876e-02 1.09056931 7.492e-17 [823,] 2.170048e-02 1.08895187 2.144e-16 [824,] 2.178250e-02 1.08733515 2.333e-16 [825,] 2.186483e-02 1.08571915 2.468e-16 [826,] 2.194747e-02 1.08410387 -9.418e-17 [827,] 2.203042e-02 1.08248931 -2.323e-16 [828,] 2.211369e-02 1.08087548 4.258e-17 [829,] 2.219728e-02 1.07926237 -4.568e-17 [830,] 2.228117e-02 1.07764999 -7.234e-17 [831,] 2.236539e-02 1.07603834 4.533e-17 [832,] 2.244993e-02 1.07442742 -3.262e-16 [833,] 2.253478e-02 1.07281723 9.812e-17 [834,] 2.261995e-02 1.07120777 -4.502e-17 [835,] 2.270545e-02 1.06959905 7.583e-18 [836,] 2.279127e-02 1.06799107 -2.275e-16 [837,] 2.287741e-02 1.06638383 -2.647e-17 [838,] 2.296388e-02 1.06477732 1.378e-16 [839,] 2.305068e-02 1.06317156 -1.312e-16 [840,] 2.313780e-02 1.06156654 9.507e-17 [841,] 2.322526e-02 1.05996227 9.509e-17 [842,] 2.331304e-02 1.05835874 5.764e-17 [843,] 2.340116e-02 1.05675597 9.71e-17 [844,] 2.348961e-02 1.05515394 6.877e-17 [845,] 2.357839e-02 1.05355266 3.854e-18 [846,] 2.366751e-02 1.05195214 1.029e-16 [847,] 2.375697e-02 1.05035238 -6.593e-17 [848,] 2.384676e-02 1.04875337 -1.079e-16 [849,] 2.393689e-02 1.04715512 -3.359e-16 [850,] 2.402737e-02 1.04555763 -2.705e-16 [851,] 2.411818e-02 1.04396090 8.742e-17 [852,] 2.420934e-02 1.04236493 3.099e-17 [853,] 2.430085e-02 1.04076973 -2.045e-17 [854,] 2.439270e-02 1.03917530 -4.708e-16 [855,] 2.448489e-02 1.03758164 -1.862e-16 [856,] 2.457744e-02 1.03598875 1.829e-17 [857,] 2.467033e-02 1.03439663 -2.73e-16 [858,] 2.476358e-02 1.03280528 1.807e-16 [859,] 2.485718e-02 1.03121471 -2.97e-16 [860,] 2.495113e-02 1.02962491 5.071e-17 [861,] 2.504544e-02 1.02803590 -4.632e-17 [862,] 2.514010e-02 1.02644766 6.223e-18 [863,] 2.523513e-02 1.02486021 -1.205e-16 [864,] 2.533051e-02 1.02327354 6.648e-17 [865,] 2.542625e-02 1.02168766 -1.26e-16 [866,] 2.552235e-02 1.02010257 -1.408e-16 [867,] 2.561882e-02 1.01851826 -2.085e-16 [868,] 2.571565e-02 1.01693475 -6.021e-17 [869,] 2.581285e-02 1.01535202 2.078e-16 [870,] 2.591041e-02 1.01377010 -5.141e-17 [871,] 2.600834e-02 1.01218897 -2.631e-16 [872,] 2.610665e-02 1.01060863 -4.697e-17 [873,] 2.620532e-02 1.00902910 -9.088e-17 [874,] 2.630437e-02 1.00745036 -1.693e-16 [875,] 2.640379e-02 1.00587243 -2.563e-16 [876,] 2.650359e-02 1.00429531 -2.685e-16 [877,] 2.660377e-02 1.00271899 -2.211e-16 [878,] 2.670432e-02 1.00114348 -2.12e-17 [879,] 2.680526e-02 0.99956878 5.782e-17 [880,] 2.690657e-02 0.99799489 1.259e-16 [881,] 2.700827e-02 0.99642182 5.866e-17 [882,] 2.711035e-02 0.99484955 5.209e-17 [883,] 2.721282e-02 0.99327811 -1.323e-16 [884,] 2.731568e-02 0.99170749 4.052e-17 [885,] 2.741892e-02 0.99013768 -3.958e-16 [886,] 2.752256e-02 0.98856870 -5.005e-17 [887,] 2.762658e-02 0.98700054 -2.743e-16 [888,] 2.773100e-02 0.98543321 3.239e-17 [889,] 2.783582e-02 0.98386670 -1.531e-16 [890,] 2.794103e-02 0.98230103 -2.255e-16 [891,] 2.804664e-02 0.98073618 6.722e-17 [892,] 2.815265e-02 0.97917217 -1.908e-16 [893,] 2.825905e-02 0.97760899 9.306e-17 [894,] 2.836587e-02 0.97604665 -1.783e-16 [895,] 2.847308e-02 0.97448515 -1.001e-16 [896,] 2.858070e-02 0.97292449 2.365e-16 [897,] 2.868873e-02 0.97136466 -6.861e-17 [898,] 2.879716e-02 0.96980569 1.277e-16 [899,] 2.890600e-02 0.96824755 -3.515e-16 [900,] 2.901526e-02 0.96669027 -2.804e-16 [901,] 2.912493e-02 0.96513383 -1.569e-16 [902,] 2.923501e-02 0.96357824 -1.36e-16 [903,] 2.934551e-02 0.96202351 6.619e-17 [904,] 2.945643e-02 0.96046963 -2.519e-18 [905,] 2.956776e-02 0.95891660 1.127e-16 [906,] 2.967952e-02 0.95736443 -3.469e-17 [907,] 2.979170e-02 0.95581313 -1.893e-17 [908,] 2.990430e-02 0.95426268 -2.731e-16 [909,] 3.001733e-02 0.95271310 -4.179e-16 [910,] 3.013079e-02 0.95116438 -4.116e-16 [911,] 3.024468e-02 0.94961653 -1.603e-16 [912,] 3.035899e-02 0.94806954 6.2e-17 [913,] 3.047374e-02 0.94652343 2.81e-16 [914,] 3.058892e-02 0.94497819 -3.512e-16 [915,] 3.070454e-02 0.94343382 -4.052e-17 [916,] 3.082059e-02 0.94189033 1.171e-16 [917,] 3.093708e-02 0.94034771 -1.07e-16 [918,] 3.105402e-02 0.93880598 2.727e-16 [919,] 3.117139e-02 0.93726513 1.25e-17 [920,] 3.128921e-02 0.93572515 -3.771e-16 [921,] 3.140747e-02 0.93418607 -1.724e-16 [922,] 3.152618e-02 0.93264787 1.627e-17 [923,] 3.164534e-02 0.93111056 5.401e-17 [924,] 3.176495e-02 0.92957414 -1.84e-18 [925,] 3.188501e-02 0.92803861 -2.467e-16 [926,] 3.200553e-02 0.92650397 5.867e-17 [927,] 3.212650e-02 0.92497023 -2.504e-16 [928,] 3.224793e-02 0.92343739 1.557e-16 [929,] 3.236982e-02 0.92190545 -2.768e-16 [930,] 3.249216e-02 0.92037441 1.197e-16 [931,] 3.261497e-02 0.91884427 6.503e-17 [932,] 3.273825e-02 0.91731504 -3.013e-17 [933,] 3.286199e-02 0.91578671 -1.18e-16 [934,] 3.298620e-02 0.91425929 -1.666e-16 [935,] 3.311087e-02 0.91273278 1.009e-16 [936,] 3.323602e-02 0.91120719 -1.158e-16 [937,] 3.336165e-02 0.90968251 6.961e-17 [938,] 3.348774e-02 0.90815874 -2.289e-16 [939,] 3.361432e-02 0.90663589 7.742e-17 [940,] 3.374137e-02 0.90511397 9.563e-17 [941,] 3.386890e-02 0.90359296 1.625e-17 [942,] 3.399691e-02 0.90207288 3.797e-17 [943,] 3.412541e-02 0.90055372 -2.957e-16 [944,] 3.425439e-02 0.89903549 -2.451e-16 [945,] 3.438387e-02 0.89751819 1.066e-16 [946,] 3.451383e-02 0.89600181 2.338e-16 [947,] 3.464428e-02 0.89448638 -8.598e-17 [948,] 3.477522e-02 0.89297187 -3.501e-16 [949,] 3.490666e-02 0.89145830 8.708e-17 [950,] 3.503860e-02 0.88994567 -1.509e-16 [951,] 3.517103e-02 0.88843398 1.641e-16 [952,] 3.530397e-02 0.88692324 -2.553e-16 [953,] 3.543741e-02 0.88541343 -3.422e-16 [954,] 3.557135e-02 0.88390457 -2.188e-16 [955,] 3.570580e-02 0.88239666 4.565e-16 [956,] 3.584076e-02 0.88088970 1.196e-17 [957,] 3.597622e-02 0.87938369 -6.376e-17 [958,] 3.611220e-02 0.87787864 -9.577e-17 [959,] 3.624870e-02 0.87637453 -1.308e-16 [960,] 3.638570e-02 0.87487139 -3.052e-16 [961,] 3.652323e-02 0.87336920 4.848e-17 [962,] 3.666128e-02 0.87186798 -1.073e-17 [963,] 3.679985e-02 0.87036772 -3.137e-16 [964,] 3.693894e-02 0.86886842 -2.551e-16 [965,] 3.707856e-02 0.86737008 3.083e-16 [966,] 3.721870e-02 0.86587272 -1.701e-16 [967,] 3.735938e-02 0.86437633 3.334e-16 [968,] 3.750058e-02 0.86288091 -2.782e-16 [969,] 3.764232e-02 0.86138646 4.781e-17 [970,] 3.778460e-02 0.85989299 -2.843e-16 [971,] 3.792742e-02 0.85840049 -2.075e-16 [972,] 3.807077e-02 0.85690898 -1.42e-16 [973,] 3.821466e-02 0.85541844 -4.378e-16 [974,] 3.835910e-02 0.85392889 -1.974e-16 [975,] 3.850409e-02 0.85244033 5.356e-17 [976,] 3.864962e-02 0.85095275 -3.243e-16 [977,] 3.879571e-02 0.84946616 -3.412e-16 [978,] 3.894234e-02 0.84798056 1.557e-16 [979,] 3.908953e-02 0.84649596 1.216e-16 [980,] 3.923728e-02 0.84501235 -8.871e-17 [981,] 3.938558e-02 0.84352973 5.891e-17 [982,] 3.953445e-02 0.84204812 3.148e-16 [983,] 3.968388e-02 0.84056751 2.21e-17 [984,] 3.983387e-02 0.83908789 -4.926e-17 [985,] 3.998443e-02 0.83760928 -1.519e-16 [986,] 4.013556e-02 0.83613168 -1.871e-16 [987,] 4.028726e-02 0.83465509 -2.027e-17 [988,] 4.043953e-02 0.83317951 1.291e-16 [989,] 4.059238e-02 0.83170493 1.072e-16 [990,] 4.074581e-02 0.83023138 -1.685e-16 [991,] 4.089982e-02 0.82875883 -9.306e-17 [992,] 4.105440e-02 0.82728731 6.137e-17 [993,] 4.120958e-02 0.82581680 -2.687e-17 [994,] 4.136534e-02 0.82434732 -1.502e-16 [995,] 4.152169e-02 0.82287886 7.17e-17 [996,] 4.167862e-02 0.82141142 1.373e-16 [997,] 4.183616e-02 0.81994502 -2.858e-16 [998,] 4.199428e-02 0.81847964 -1.54e-16 [999,] 4.215301e-02 0.81701529 -3.8e-17 [1000,] 4.231234e-02 0.81555198 -6.678e-17 [1001,] 4.247226e-02 0.81408970 2.762e-16 [1002,] 4.263280e-02 0.81262845 4.856e-17 [1003,] 4.279393e-02 0.81116825 4.078e-17 [1004,] 4.295568e-02 0.80970909 -1.661e-16 [1005,] 4.311804e-02 0.80825096 2.196e-17 [1006,] 4.328101e-02 0.80679389 1.227e-16 [1007,] 4.344460e-02 0.80533786 8.701e-17 [1008,] 4.360881e-02 0.80388288 -1.174e-16 [1009,] 4.377364e-02 0.80242895 9.071e-17 [1010,] 4.393909e-02 0.80097607 1.286e-16 [1011,] 4.410517e-02 0.79952424 2.322e-16 [1012,] 4.427187e-02 0.79807347 9.065e-18 [1013,] 4.443920e-02 0.79662376 -5.117e-17 [1014,] 4.460717e-02 0.79517511 -4.1e-16 [1015,] 4.477577e-02 0.79372752 -5.002e-16 [1016,] 4.494501e-02 0.79228100 -4.408e-16 [1017,] 4.511489e-02 0.79083554 3.923e-16 [1018,] 4.528541e-02 0.78939114 1.281e-17 [1019,] 4.545657e-02 0.78794782 4.667e-17 [1020,] 4.562839e-02 0.78650557 -2.425e-16 [1021,] 4.580085e-02 0.78506439 4.724e-16 [1022,] 4.597396e-02 0.78362429 -1.708e-17 [1023,] 4.614773e-02 0.78218527 -8.247e-17 [1024,] 4.632215e-02 0.78074732 -7.897e-17 [1025,] 4.649724e-02 0.77931046 -9.085e-18 [1026,] 4.667298e-02 0.77787468 1.327e-16 [1027,] 4.684939e-02 0.77643998 -7.516e-17 [1028,] 4.702647e-02 0.77500637 -1.455e-16 [1029,] 4.720421e-02 0.77357385 -2.664e-16 [1030,] 4.738263e-02 0.77214242 3.007e-16 [1031,] 4.756172e-02 0.77071208 -3.419e-17 [1032,] 4.774149e-02 0.76928284 -6.811e-17 [1033,] 4.792194e-02 0.76785470 1.776e-16 [1034,] 4.810307e-02 0.76642765 -6.59e-17 [1035,] 4.828488e-02 0.76500171 1.191e-16 [1036,] 4.846739e-02 0.76357686 -3.237e-16 [1037,] 4.865058e-02 0.76215312 -2.161e-16 [1038,] 4.883446e-02 0.76073049 2.318e-16 [1039,] 4.901904e-02 0.75930897 -1.716e-16 [1040,] 4.920432e-02 0.75788855 -4.697e-16 [1041,] 4.939030e-02 0.75646925 -2.228e-16 [1042,] 4.957698e-02 0.75505106 1.406e-16 [1043,] 4.976436e-02 0.75363399 1.585e-17 [1044,] 4.995245e-02 0.75221804 -6.918e-19 [1045,] 5.014126e-02 0.75080320 -1.627e-16 [1046,] 5.033078e-02 0.74938949 -1.851e-16 [1047,] 5.052101e-02 0.74797691 2.93e-17 [1048,] 5.071197e-02 0.74656544 1.236e-16 [1049,] 5.090364e-02 0.74515511 1.939e-16 [1050,] 5.109604e-02 0.74374590 1.912e-16 [1051,] 5.128917e-02 0.74233783 4.982e-17 [1052,] 5.148303e-02 0.74093089 8.152e-17 [1053,] 5.167762e-02 0.73952509 9.513e-17 [1054,] 5.187294e-02 0.73812042 3.885e-16 [1055,] 5.206901e-02 0.73671689 -3.598e-16 [1056,] 5.226581e-02 0.73531451 -2.818e-17 [1057,] 5.246336e-02 0.73391326 -7.462e-17 [1058,] 5.266166e-02 0.73251317 -8.524e-17 [1059,] 5.286070e-02 0.73111421 1.743e-16 [1060,] 5.306050e-02 0.72971641 -6.557e-18 [1061,] 5.326105e-02 0.72831976 2.242e-16 [1062,] 5.346236e-02 0.72692426 -1.775e-16 [1063,] 5.366443e-02 0.72552992 -8.488e-17 [1064,] 5.386727e-02 0.72413674 -1.443e-16 [1065,] 5.407087e-02 0.72274471 -7.736e-18 [1066,] 5.427524e-02 0.72135384 1.582e-16 [1067,] 5.448038e-02 0.71996414 9.875e-17 [1068,] 5.468630e-02 0.71857560 -3.399e-16 [1069,] 5.489300e-02 0.71718822 -4.858e-16 [1070,] 5.510048e-02 0.71580202 -1.397e-18 [1071,] 5.530874e-02 0.71441699 -9.825e-17 [1072,] 5.551779e-02 0.71303312 1.013e-16 [1073,] 5.572763e-02 0.71165044 1.431e-17 [1074,] 5.593827e-02 0.71026892 3.364e-16 [1075,] 5.614970e-02 0.70888859 -1.191e-16 [1076,] 5.636192e-02 0.70750944 -1.337e-16 [1077,] 5.657495e-02 0.70613146 3.001e-17 [1078,] 5.678879e-02 0.70475468 2.713e-17 [1079,] 5.700343e-02 0.70337907 2.624e-16 [1080,] 5.721889e-02 0.70200466 1.905e-16 [1081,] 5.743516e-02 0.70063144 -2.462e-16 [1082,] 5.765225e-02 0.69925940 -4.048e-16 [1083,] 5.787016e-02 0.69788856 -3.308e-16 [1084,] 5.808889e-02 0.69651892 -1.71e-16 [1085,] 5.830844e-02 0.69515047 -1.253e-16 [1086,] 5.852883e-02 0.69378322 -1.712e-16 [1087,] 5.875005e-02 0.69241718 -6.146e-17 [1088,] 5.897211e-02 0.69105233 -1.575e-16 [1089,] 5.919501e-02 0.68968870 -2.219e-16 [1090,] 5.941875e-02 0.68832626 -1.287e-16 [1091,] 5.964333e-02 0.68696504 -2.788e-17 [1092,] 5.986876e-02 0.68560503 -1.237e-16 [1093,] 6.009505e-02 0.68424623 -3.028e-17 [1094,] 6.032219e-02 0.68288865 -4.954e-16 [1095,] 6.055019e-02 0.68153228 -1.23e-16 [1096,] 6.077905e-02 0.68017713 2.12e-16 [1097,] 6.100878e-02 0.67882320 1.73e-17 [1098,] 6.123937e-02 0.67747050 -2.211e-17 [1099,] 6.147084e-02 0.67611901 -5.129e-17 [1100,] 6.170318e-02 0.67476876 -3.067e-16 [1101,] 6.193640e-02 0.67341973 -2.323e-16 [1102,] 6.217050e-02 0.67207193 -2.402e-16 [1103,] 6.240548e-02 0.67072537 -5.503e-17 [1104,] 6.264136e-02 0.66938003 -7.772e-17 [1105,] 6.287812e-02 0.66803594 2.519e-16 [1106,] 6.311578e-02 0.66669308 1.54e-16 [1107,] 6.335434e-02 0.66535146 1.369e-16 [1108,] 6.359380e-02 0.66401108 -4.458e-16 [1109,] 6.383417e-02 0.66267195 1.202e-16 [1110,] 6.407544e-02 0.66133406 -1.001e-16 [1111,] 6.431762e-02 0.65999741 4.817e-17 [1112,] 6.456073e-02 0.65866202 2.3e-16 [1113,] 6.480475e-02 0.65732788 1.762e-16 [1114,] 6.504969e-02 0.65599499 -1.962e-16 [1115,] 6.529555e-02 0.65466335 1.82e-16 [1116,] 6.554235e-02 0.65333297 -4.538e-16 [1117,] 6.579008e-02 0.65200385 1.192e-16 [1118,] 6.603875e-02 0.65067599 1.054e-17 [1119,] 6.628835e-02 0.64934940 -1.742e-16 [1120,] 6.653890e-02 0.64802406 -4.714e-16 [1121,] 6.679040e-02 0.64670000 9.64e-18 [1122,] 6.704285e-02 0.64537720 4.71e-19 [1123,] 6.729625e-02 0.64405567 -4.805e-16 [1124,] 6.755061e-02 0.64273541 -1.246e-16 [1125,] 6.780593e-02 0.64141642 -1.514e-16 [1126,] 6.806221e-02 0.64009872 -1.89e-17 [1127,] 6.831947e-02 0.63878228 -1.321e-18 [1128,] 6.857770e-02 0.63746713 -1.328e-16 [1129,] 6.883690e-02 0.63615326 7.962e-17 [1130,] 6.909708e-02 0.63484067 -5.255e-16 [1131,] 6.935825e-02 0.63352937 -2.805e-16 [1132,] 6.962040e-02 0.63221935 2.74e-16 [1133,] 6.988354e-02 0.63091062 3.601e-17 [1134,] 7.014768e-02 0.62960318 -2.823e-16 [1135,] 7.041282e-02 0.62829704 -2.673e-16 [1136,] 7.067896e-02 0.62699218 7.886e-17 [1137,] 7.094610e-02 0.62568863 -1.907e-16 [1138,] 7.121426e-02 0.62438637 -1.186e-16 [1139,] 7.148342e-02 0.62308541 -5.01e-16 [1140,] 7.175361e-02 0.62178575 -4.247e-16 [1141,] 7.202482e-02 0.62048740 -3.315e-16 [1142,] 7.229705e-02 0.61919035 -1.486e-16 [1143,] 7.257031e-02 0.61789461 1.856e-16 [1144,] 7.284460e-02 0.61660018 -2.316e-16 [1145,] 7.311993e-02 0.61530706 -1.329e-16 [1146,] 7.339630e-02 0.61401525 2.051e-16 [1147,] 7.367372e-02 0.61272475 1.399e-17 [1148,] 7.395218e-02 0.61143557 -4.318e-16 [1149,] 7.423170e-02 0.61014771 -2.122e-17 [1150,] 7.451227e-02 0.60886117 -4.976e-16 [1151,] 7.479391e-02 0.60757595 -1.344e-16 [1152,] 7.507660e-02 0.60629206 -4.058e-16 [1153,] 7.536037e-02 0.60500949 1.775e-16 [1154,] 7.564521e-02 0.60372824 -3.002e-16 [1155,] 7.593112e-02 0.60244833 -1.608e-17 [1156,] 7.621812e-02 0.60116975 2.708e-18 [1157,] 7.650620e-02 0.59989249 2.678e-17 [1158,] 7.679537e-02 0.59861658 -6.213e-17 [1159,] 7.708563e-02 0.59734200 -3.118e-16 [1160,] 7.737699e-02 0.59606876 -2.807e-17 [1161,] 7.766946e-02 0.59479685 4.67e-16 [1162,] 7.796302e-02 0.59352629 -2.576e-16 [1163,] 7.825770e-02 0.59225708 3.001e-16 [1164,] 7.855349e-02 0.59098920 -4.537e-16 [1165,] 7.885040e-02 0.58972268 -3.887e-16 [1166,] 7.914843e-02 0.58845750 -1.511e-16 [1167,] 7.944758e-02 0.58719368 5.184e-17 [1168,] 7.974787e-02 0.58593121 -1.842e-16 [1169,] 8.004929e-02 0.58467009 -1.361e-17 [1170,] 8.035186e-02 0.58341032 5.67e-16 [1171,] 8.065556e-02 0.58215192 1.902e-16 [1172,] 8.096041e-02 0.58089487 -2.595e-16 [1173,] 8.126642e-02 0.57963919 -1.286e-16 [1174,] 8.157358e-02 0.57838487 -2.431e-16 [1175,] 8.188191e-02 0.57713191 3.089e-16 [1176,] 8.219139e-02 0.57588032 -3.204e-16 [1177,] 8.250205e-02 0.57463010 7.647e-17 [1178,] 8.281388e-02 0.57338125 -1.855e-16 [1179,] 8.312690e-02 0.57213377 7.402e-17 [1180,] 8.344109e-02 0.57088766 2.556e-16 [1181,] 8.375647e-02 0.56964293 -2.093e-16 [1182,] 8.407304e-02 0.56839957 5.249e-17 [1183,] 8.439082e-02 0.56715760 -2.631e-16 [1184,] 8.470979e-02 0.56591700 -4.305e-16 [1185,] 8.502996e-02 0.56467779 -3.424e-16 [1186,] 8.535135e-02 0.56343996 -3.894e-17 [1187,] 8.567395e-02 0.56220352 -6.942e-18 [1188,] 8.599777e-02 0.56096846 2.967e-17 [1189,] 8.632282e-02 0.55973480 -2.048e-16 [1190,] 8.664909e-02 0.55850252 -1.114e-16 [1191,] 8.697660e-02 0.55727164 1.82e-16 [1192,] 8.730534e-02 0.55604215 -2.247e-17 [1193,] 8.763533e-02 0.55481406 3.064e-16 [1194,] 8.796657e-02 0.55358736 -6.389e-17 [1195,] 8.829905e-02 0.55236207 -1.877e-16 [1196,] 8.863280e-02 0.55113817 -2.463e-16 [1197,] 8.896780e-02 0.54991568 5.279e-17 [1198,] 8.930407e-02 0.54869459 -1.106e-16 [1199,] 8.964161e-02 0.54747491 -1.05e-16 [1200,] 8.998043e-02 0.54625664 4.566e-17 [1201,] 9.032053e-02 0.54503977 -5.674e-16 [1202,] 9.066191e-02 0.54382432 1.387e-16 [1203,] 9.100459e-02 0.54261028 -4.135e-16 [1204,] 9.134856e-02 0.54139766 -3.242e-17 [1205,] 9.169383e-02 0.54018645 5.547e-17 [1206,] 9.204040e-02 0.53897665 -3.776e-16 [1207,] 9.238829e-02 0.53776828 -9.784e-17 [1208,] 9.273749e-02 0.53656133 -5.024e-16 [1209,] 9.308800e-02 0.53535580 2.893e-16 [1210,] 9.343985e-02 0.53415170 -2.566e-16 [1211,] 9.379302e-02 0.53294902 6.101e-18 [1212,] 9.414753e-02 0.53174777 -3.809e-17 [1213,] 9.450338e-02 0.53054795 -2.802e-16 [1214,] 9.486057e-02 0.52934956 -2.974e-16 [1215,] 9.521912e-02 0.52815260 5.632e-17 [1216,] 9.557902e-02 0.52695708 -7.277e-16 [1217,] 9.594028e-02 0.52576299 -5.177e-16 [1218,] 9.630290e-02 0.52457034 -1.176e-16 [1219,] 9.666690e-02 0.52337913 1.143e-16 [1220,] 9.703227e-02 0.52218936 -1.171e-16 [1221,] 9.739902e-02 0.52100103 6.037e-17 [1222,] 9.776716e-02 0.51981415 -3.257e-16 [1223,] 9.813669e-02 0.51862871 -2.452e-16 [1224,] 9.850761e-02 0.51744472 -1.537e-16 [1225,] 9.887994e-02 0.51626217 -3.4e-16 [1226,] 9.925368e-02 0.51508108 1.784e-16 [1227,] 9.962883e-02 0.51390144 2.112e-16 [1228,] 1.000054e-01 0.51272325 2.197e-16 [1229,] 1.003834e-01 0.51154651 1.211e-16 [1230,] 1.007628e-01 0.51037124 9.434e-17 [1231,] 1.011437e-01 0.50919742 -1.372e-16 [1232,] 1.015259e-01 0.50802506 1.191e-16 [1233,] 1.019097e-01 0.50685416 -3.645e-16 [1234,] 1.022949e-01 0.50568472 -4.116e-17 [1235,] 1.026815e-01 0.50451675 -3.992e-16 [1236,] 1.030696e-01 0.50335024 -2.301e-16 [1237,] 1.034592e-01 0.50218520 2.301e-18 [1238,] 1.038502e-01 0.50102163 -3.777e-16 [1239,] 1.042428e-01 0.49985953 1.405e-16 [1240,] 1.046368e-01 0.49869890 -1.425e-16 [1241,] 1.050323e-01 0.49753974 -1.641e-16 [1242,] 1.054292e-01 0.49638206 -3.708e-16 [1243,] 1.058277e-01 0.49522585 3.172e-16 [1244,] 1.062277e-01 0.49407112 -9.566e-17 [1245,] 1.066292e-01 0.49291788 1.393e-16 [1246,] 1.070323e-01 0.49176611 -2.427e-16 [1247,] 1.074368e-01 0.49061582 -1.121e-16 [1248,] 1.078429e-01 0.48946702 -1.839e-16 [1249,] 1.082505e-01 0.48831970 2.204e-17 [1250,] 1.086597e-01 0.48717387 2.451e-16 [1251,] 1.090704e-01 0.48602953 -3.069e-16 [1252,] 1.094826e-01 0.48488667 -3.164e-16 [1253,] 1.098964e-01 0.48374531 -5.634e-17 [1254,] 1.103118e-01 0.48260544 -1.165e-16 [1255,] 1.107287e-01 0.48146706 -1.572e-16 [1256,] 1.111473e-01 0.48033018 -4.806e-16 [1257,] 1.115674e-01 0.47919479 -4.58e-16 [1258,] 1.119891e-01 0.47806090 -1.23e-16 [1259,] 1.124123e-01 0.47692851 -3.845e-16 [1260,] 1.128372e-01 0.47579763 -7.238e-18 [1261,] 1.132637e-01 0.47466824 6.856e-17 [1262,] 1.136918e-01 0.47354036 -2.816e-16 [1263,] 1.141215e-01 0.47241398 -2.254e-16 [1264,] 1.145529e-01 0.47128911 2.32e-16 [1265,] 1.149859e-01 0.47016575 1.271e-16 [1266,] 1.154205e-01 0.46904389 -4.92e-16 [1267,] 1.158567e-01 0.46792355 1.671e-16 [1268,] 1.162946e-01 0.46680472 -5.092e-17 [1269,] 1.167342e-01 0.46568740 -5.076e-16 [1270,] 1.171754e-01 0.46457160 -2.452e-16 [1271,] 1.176183e-01 0.46345731 -1.977e-16 [1272,] 1.180628e-01 0.46234454 1.061e-17 [1273,] 1.185091e-01 0.46123328 8.607e-17 [1274,] 1.189570e-01 0.46012355 8.415e-17 [1275,] 1.194066e-01 0.45901534 2.455e-16 [1276,] 1.198580e-01 0.45790865 -2.718e-16 [1277,] 1.203110e-01 0.45680348 1.998e-17 [1278,] 1.207657e-01 0.45569984 -7.321e-17 [1279,] 1.212222e-01 0.45459773 -1.51e-16 [1280,] 1.216804e-01 0.45349714 -2.295e-16 [1281,] 1.221403e-01 0.45239809 -1.562e-16 [1282,] 1.226019e-01 0.45130056 -1.924e-16 [1283,] 1.230653e-01 0.45020456 -1.318e-16 [1284,] 1.235305e-01 0.44911010 1.088e-17 [1285,] 1.239974e-01 0.44801717 -2.169e-16 [1286,] 1.244661e-01 0.44692578 -3.13e-16 [1287,] 1.249365e-01 0.44583592 -1.486e-16 [1288,] 1.254087e-01 0.44474760 -3.641e-16 [1289,] 1.258827e-01 0.44366082 5.743e-16 [1290,] 1.263585e-01 0.44257558 -2.172e-16 [1291,] 1.268361e-01 0.44149188 2.301e-16 [1292,] 1.273155e-01 0.44040972 -8.829e-17 [1293,] 1.277967e-01 0.43932911 -7.99e-16 [1294,] 1.282798e-01 0.43825004 2.421e-16 [1295,] 1.287646e-01 0.43717252 -2.494e-16 [1296,] 1.292513e-01 0.43609655 -7.113e-16 [1297,] 1.297399e-01 0.43502212 -3.754e-17 [1298,] 1.302302e-01 0.43394925 2.875e-16 [1299,] 1.307225e-01 0.43287792 -1.954e-16 [1300,] 1.312165e-01 0.43180815 -1.62e-16 [1301,] 1.317125e-01 0.43073993 -3.834e-17 [1302,] 1.322103e-01 0.42967327 -5.333e-16 [1303,] 1.327101e-01 0.42860816 -5.067e-16 [1304,] 1.332117e-01 0.42754461 1.97e-16 [1305,] 1.337152e-01 0.42648261 5.877e-17 [1306,] 1.342206e-01 0.42542218 -4.148e-16 [1307,] 1.347279e-01 0.42436330 -3.967e-16 [1308,] 1.352371e-01 0.42330599 -1.756e-17 [1309,] 1.357483e-01 0.42225024 3.158e-16 [1310,] 1.362613e-01 0.42119605 1.192e-17 [1311,] 1.367764e-01 0.42014342 5.846e-17 [1312,] 1.372933e-01 0.41909236 -4.037e-16 [1313,] 1.378123e-01 0.41804287 -1.109e-16 [1314,] 1.383332e-01 0.41699495 5.577e-17 [1315,] 1.388560e-01 0.41594859 1.151e-16 [1316,] 1.393808e-01 0.41490381 -5.293e-16 [1317,] 1.399077e-01 0.41386059 4.466e-16 [1318,] 1.404365e-01 0.41281895 -5.744e-16 [1319,] 1.409673e-01 0.41177888 -2.873e-16 [1320,] 1.415001e-01 0.41074038 -1.876e-17 [1321,] 1.420349e-01 0.40970346 1.593e-16 [1322,] 1.425718e-01 0.40866811 4.043e-16 [1323,] 1.431106e-01 0.40763434 -9.976e-17 [1324,] 1.436516e-01 0.40660215 5.678e-17 [1325,] 1.441945e-01 0.40557154 -3.821e-17 [1326,] 1.447395e-01 0.40454251 3.409e-16 [1327,] 1.452866e-01 0.40351506 1.813e-16 [1328,] 1.458357e-01 0.40248919 -4.213e-16 [1329,] 1.463870e-01 0.40146490 -5.332e-17 [1330,] 1.469402e-01 0.40044220 7.06e-17 [1331,] 1.474956e-01 0.39942108 -7.656e-16 [1332,] 1.480531e-01 0.39840155 3.634e-17 [1333,] 1.486127e-01 0.39738360 1.402e-16 [1334,] 1.491744e-01 0.39636724 2.636e-16 [1335,] 1.497383e-01 0.39535247 9.237e-16 [1336,] 1.503042e-01 0.39433929 -5.629e-16 [1337,] 1.508723e-01 0.39332770 -2.343e-16 [1338,] 1.514426e-01 0.39231770 1.063e-16 [1339,] 1.520150e-01 0.39130929 -5.189e-18 [1340,] 1.525896e-01 0.39030248 -4.102e-16 [1341,] 1.531663e-01 0.38929726 -6.83e-16 [1342,] 1.537452e-01 0.38829363 -2.341e-16 [1343,] 1.543263e-01 0.38729160 3.406e-16 [1344,] 1.549096e-01 0.38629116 -4.653e-16 [1345,] 1.554952e-01 0.38529232 -7.151e-16 [1346,] 1.560829e-01 0.38429508 2.191e-16 [1347,] 1.566728e-01 0.38329944 -6.194e-16 [1348,] 1.572650e-01 0.38230540 -1.404e-16 [1349,] 1.578594e-01 0.38131296 -6.165e-17 [1350,] 1.584561e-01 0.38032212 1.325e-16 [1351,] 1.590550e-01 0.37933288 1.272e-16 [1352,] 1.596562e-01 0.37834524 5.619e-16 [1353,] 1.602596e-01 0.37735921 5.968e-17 [1354,] 1.608653e-01 0.37637478 -6.299e-16 [1355,] 1.614734e-01 0.37539195 -8.644e-16 [1356,] 1.620837e-01 0.37441073 7.444e-16 [1357,] 1.626963e-01 0.37343112 1.694e-16 [1358,] 1.633113e-01 0.37245312 -7.738e-17 [1359,] 1.639285e-01 0.37147672 5.047e-16 [1360,] 1.645481e-01 0.37050193 -5.889e-16 [1361,] 1.651701e-01 0.36952875 -7.261e-16 [1362,] 1.657944e-01 0.36855718 2.065e-16 [1363,] 1.664210e-01 0.36758722 -3.978e-16 [1364,] 1.670500e-01 0.36661887 1.014e-16 [1365,] 1.676814e-01 0.36565214 1.438e-16 [1366,] 1.683152e-01 0.36468701 -4.343e-17 [1367,] 1.689514e-01 0.36372350 -3.983e-16 [1368,] 1.695900e-01 0.36276160 -1.757e-16 [1369,] 1.702310e-01 0.36180132 -4.242e-16 [1370,] 1.708744e-01 0.36084266 9.757e-17 [1371,] 1.715202e-01 0.35988561 -8.957e-17 [1372,] 1.721685e-01 0.35893017 -7.19e-16 [1373,] 1.728193e-01 0.35797635 1.836e-17 [1374,] 1.734725e-01 0.35702415 3.303e-16 [1375,] 1.741282e-01 0.35607357 -3.979e-16 [1376,] 1.747863e-01 0.35512461 1.498e-16 [1377,] 1.754469e-01 0.35417726 1.078e-16 [1378,] 1.761101e-01 0.35323154 4.092e-16 [1379,] 1.767757e-01 0.35228744 -1.299e-16 [1380,] 1.774439e-01 0.35134495 5.702e-17 [1381,] 1.781146e-01 0.35040409 -6.162e-16 [1382,] 1.787878e-01 0.34946485 -4.48e-16 [1383,] 1.794636e-01 0.34852723 -7.944e-16 [1384,] 1.801419e-01 0.34759124 -2.021e-17 [1385,] 1.808227e-01 0.34665687 2.865e-16 [1386,] 1.815062e-01 0.34572412 -2.943e-16 [1387,] 1.821922e-01 0.34479300 -3.07e-16 [1388,] 1.828809e-01 0.34386350 -3.581e-17 [1389,] 1.835721e-01 0.34293563 4.734e-16 [1390,] 1.842660e-01 0.34200939 -1.349e-16 [1391,] 1.849624e-01 0.34108477 2.317e-16 [1392,] 1.856615e-01 0.34016177 5.049e-16 [1393,] 1.863633e-01 0.33924041 5.41e-16 [1394,] 1.870677e-01 0.33832067 -2.542e-16 [1395,] 1.877747e-01 0.33740256 -4.783e-17 [1396,] 1.884844e-01 0.33648607 -6.116e-17 [1397,] 1.891969e-01 0.33557122 -7.994e-17 [1398,] 1.899120e-01 0.33465800 -1.088e-15 [1399,] 1.906298e-01 0.33374640 6.624e-16 [1400,] 1.913503e-01 0.33283643 -1.466e-16 [1401,] 1.920735e-01 0.33192810 -7.665e-16 [1402,] 1.927995e-01 0.33102139 -2.985e-16 [1403,] 1.935282e-01 0.33011632 2.602e-16 [1404,] 1.942597e-01 0.32921288 4.883e-16 [1405,] 1.949940e-01 0.32831107 -6.921e-16 [1406,] 1.957310e-01 0.32741089 -5.365e-16 [1407,] 1.964708e-01 0.32651234 4.051e-16 [1408,] 1.972134e-01 0.32561542 -2.612e-16 [1409,] 1.979588e-01 0.32472014 3.236e-16 [1410,] 1.987070e-01 0.32382649 -5.548e-17 [1411,] 1.994581e-01 0.32293447 2.126e-16 [1412,] 2.002120e-01 0.32204409 -2.565e-16 [1413,] 2.009687e-01 0.32115534 -7.129e-16 [1414,] 2.017283e-01 0.32026822 3.861e-16 [1415,] 2.024908e-01 0.31938274 -1.464e-16 [1416,] 2.032561e-01 0.31849889 5.286e-16 [1417,] 2.040244e-01 0.31761668 -7.562e-16 [1418,] 2.047955e-01 0.31673610 -3.321e-16 [1419,] 2.055696e-01 0.31585715 -4.139e-16 [1420,] 2.063466e-01 0.31497984 -8.649e-16 [1421,] 2.071265e-01 0.31410417 -6.485e-16 [1422,] 2.079094e-01 0.31323013 -5.25e-16 [1423,] 2.086952e-01 0.31235773 5.476e-17 [1424,] 2.094840e-01 0.31148696 -6.931e-16 [1425,] 2.102758e-01 0.31061783 1.055e-15 [1426,] 2.110706e-01 0.30975033 -8.309e-17 [1427,] 2.118684e-01 0.30888447 -9.272e-16 [1428,] 2.126692e-01 0.30802024 3.627e-16 [1429,] 2.134730e-01 0.30715765 -2.485e-16 [1430,] 2.142798e-01 0.30629670 1.305e-16 [1431,] 2.150897e-01 0.30543738 -6.616e-17 [1432,] 2.159027e-01 0.30457970 6.286e-16 [1433,] 2.167188e-01 0.30372366 -8.024e-17 [1434,] 2.175379e-01 0.30286925 -4.69e-16 [1435,] 2.183601e-01 0.30201648 -3.987e-17 [1436,] 2.191855e-01 0.30116535 -4.934e-16 [1437,] 2.200139e-01 0.30031585 6.654e-16 [1438,] 2.208455e-01 0.29946798 -2.401e-17 [1439,] 2.216802e-01 0.29862176 2.794e-17 [1440,] 2.225181e-01 0.29777717 6.528e-16 [1441,] 2.233592e-01 0.29693421 -2.121e-16 [1442,] 2.242034e-01 0.29609290 8.893e-17 [1443,] 2.250508e-01 0.29525321 -3.392e-16 [1444,] 2.259014e-01 0.29441517 -4.233e-16 [1445,] 2.267553e-01 0.29357876 -2.191e-16 [1446,] 2.276123e-01 0.29274399 2.51e-16 [1447,] 2.284726e-01 0.29191085 4.982e-16 [1448,] 2.293362e-01 0.29107935 4.145e-16 [1449,] 2.302030e-01 0.29024948 -5.133e-17 [1450,] 2.310731e-01 0.28942125 -3.776e-16 [1451,] 2.319465e-01 0.28859465 1.012e-16 [1452,] 2.328232e-01 0.28776969 -1.239e-16 [1453,] 2.337032e-01 0.28694637 5.851e-16 [1454,] 2.345865e-01 0.28612468 -2.636e-17 [1455,] 2.354732e-01 0.28530462 4.674e-17 [1456,] 2.363632e-01 0.28448620 1.406e-16 [1457,] 2.372566e-01 0.28366941 -3.458e-16 [1458,] 2.381533e-01 0.28285426 -1.17e-17 [1459,] 2.390535e-01 0.28204074 -5.251e-16 [1460,] 2.399570e-01 0.28122886 6.527e-16 [1461,] 2.408640e-01 0.28041860 -6.782e-16 [1462,] 2.417744e-01 0.27960999 2.308e-16 [1463,] 2.426882e-01 0.27880300 -1.795e-16 [1464,] 2.436055e-01 0.27799765 -1.768e-16 [1465,] 2.445263e-01 0.27719393 9.902e-17 [1466,] 2.454505e-01 0.27639184 -3.458e-16 [1467,] 2.463782e-01 0.27559138 -7.45e-16 [1468,] 2.473094e-01 0.27479256 5.947e-16 [1469,] 2.482442e-01 0.27399536 -1.224e-16 [1470,] 2.491825e-01 0.27319980 3.833e-16 [1471,] 2.501243e-01 0.27240587 6.968e-17 [1472,] 2.510697e-01 0.27161356 8.217e-16 [1473,] 2.520187e-01 0.27082289 -7.509e-16 [1474,] 2.529712e-01 0.27003385 -1.026e-16 [1475,] 2.539274e-01 0.26924643 1.608e-16 [1476,] 2.548872e-01 0.26846065 -6.802e-16 [1477,] 2.558506e-01 0.26767649 3.908e-16 [1478,] 2.568176e-01 0.26689396 5.868e-16 [1479,] 2.577883e-01 0.26611306 -3.973e-16 [1480,] 2.587626e-01 0.26533378 -5.747e-16 [1481,] 2.597407e-01 0.26455613 -6.049e-16 [1482,] 2.607224e-01 0.26378011 1.928e-16 [1483,] 2.617079e-01 0.26300572 -3.302e-16 [1484,] 2.626971e-01 0.26223294 -9.291e-16 [1485,] 2.636900e-01 0.26146180 2.416e-16 [1486,] 2.646866e-01 0.26069227 5.223e-17 [1487,] 2.656871e-01 0.25992438 1.757e-16 [1488,] 2.666913e-01 0.25915810 -3.679e-16 [1489,] 2.676993e-01 0.25839345 -4.611e-18 [1490,] 2.687111e-01 0.25763042 -2.337e-16 [1491,] 2.697268e-01 0.25686901 -8.232e-17 [1492,] 2.707462e-01 0.25610922 -4.374e-17 [1493,] 2.717696e-01 0.25535105 -5.281e-16 [1494,] 2.727968e-01 0.25459451 1.284e-16 [1495,] 2.738279e-01 0.25383958 1.544e-16 [1496,] 2.748629e-01 0.25308627 -2.509e-16 [1497,] 2.759018e-01 0.25233458 -7.287e-16 [1498,] 2.769446e-01 0.25158450 -8.101e-16 [1499,] 2.779913e-01 0.25083605 -3.884e-16 [1500,] 2.790421e-01 0.25008921 -2.452e-16 [1501,] 2.800968e-01 0.24934398 4.504e-16 [1502,] 2.811554e-01 0.24860037 -7.957e-16 [1503,] 2.822181e-01 0.24785838 -5.271e-16 [1504,] 2.832848e-01 0.24711800 -2.021e-16 [1505,] 2.843555e-01 0.24637923 -1.339e-15 [1506,] 2.854303e-01 0.24564207 -5.214e-16 [1507,] 2.865092e-01 0.24490653 2.946e-17 [1508,] 2.875921e-01 0.24417259 5.027e-16 [1509,] 2.886791e-01 0.24344027 1.136e-16 [1510,] 2.897702e-01 0.24270955 -3.164e-16 [1511,] 2.908655e-01 0.24198045 -7.218e-16 [1512,] 2.919648e-01 0.24125295 -1.524e-16 [1513,] 2.930684e-01 0.24052706 -4.376e-16 [1514,] 2.941761e-01 0.23980278 -4.962e-16 [1515,] 2.952880e-01 0.23908010 -1.164e-15 [1516,] 2.964041e-01 0.23835902 2.661e-16 [1517,] 2.975244e-01 0.23763956 -1.409e-15 [1518,] 2.986489e-01 0.23692169 5.336e-16 [1519,] 2.997777e-01 0.23620543 -3.698e-16 [1520,] 3.009108e-01 0.23549076 -3.159e-18 [1521,] 3.020482e-01 0.23477770 -9.067e-16 [1522,] 3.031898e-01 0.23406624 -1.476e-16 [1523,] 3.043358e-01 0.23335638 3.762e-16 [1524,] 3.054861e-01 0.23264811 1.148e-16 [1525,] 3.066407e-01 0.23194144 2.263e-16 [1526,] 3.077997e-01 0.23123637 1.235e-16 [1527,] 3.089631e-01 0.23053290 -6.752e-16 [1528,] 3.101309e-01 0.22983102 -8.242e-16 [1529,] 3.113031e-01 0.22913073 6.232e-16 [1530,] 3.124797e-01 0.22843203 -6.052e-16 [1531,] 3.136608e-01 0.22773493 -8.415e-16 [1532,] 3.148463e-01 0.22703942 2.748e-16 [1533,] 3.160364e-01 0.22634549 -3.767e-16 [1534,] 3.172309e-01 0.22565316 -4.854e-16 [1535,] 3.184299e-01 0.22496241 -9.799e-16 [1536,] 3.196335e-01 0.22427325 2.948e-17 [1537,] 3.208416e-01 0.22358568 5.669e-16 [1538,] 3.220543e-01 0.22289969 -7.514e-17 [1539,] 3.232716e-01 0.22221529 1.047e-15 [1540,] 3.244934e-01 0.22153246 -2.309e-16 [1541,] 3.257199e-01 0.22085122 2.681e-16 [1542,] 3.269510e-01 0.22017156 -1.374e-16 [1543,] 3.281868e-01 0.21949348 -7.287e-16 [1544,] 3.294272e-01 0.21881698 9.172e-17 [1545,] 3.306724e-01 0.21814206 3.686e-16 [1546,] 3.319222e-01 0.21746871 2.549e-16 [1547,] 3.331768e-01 0.21679694 -3.563e-16 [1548,] 3.344361e-01 0.21612674 -3.229e-16 [1549,] 3.357002e-01 0.21545811 3.81e-16 [1550,] 3.369690e-01 0.21479106 4.391e-16 [1551,] 3.382426e-01 0.21412558 -6.161e-16 [1552,] 3.395211e-01 0.21346166 -7.482e-16 [1553,] 3.408044e-01 0.21279932 2.91e-17 [1554,] 3.420925e-01 0.21213854 1.596e-16 [1555,] 3.433855e-01 0.21147933 6.14e-17 [1556,] 3.446834e-01 0.21082168 1.494e-16 [1557,] 3.459862e-01 0.21016560 -2.866e-16 [1558,] 3.472939e-01 0.20951108 -5.075e-16 [1559,] 3.486066e-01 0.20885812 -3.264e-16 [1560,] 3.499242e-01 0.20820672 -1.234e-15 [1561,] 3.512468e-01 0.20755688 -3.249e-17 [1562,] 3.525744e-01 0.20690859 -3.346e-16 [1563,] 3.539071e-01 0.20626187 2.201e-16 [1564,] 3.552447e-01 0.20561669 -4.035e-16 [1565,] 3.565874e-01 0.20497308 4.671e-16 [1566,] 3.579352e-01 0.20433101 -7.025e-16 [1567,] 3.592881e-01 0.20369049 -1.053e-17 [1568,] 3.606461e-01 0.20305153 -7.11e-16 [1569,] 3.620092e-01 0.20241411 -1.679e-17 [1570,] 3.633775e-01 0.20177824 2.452e-16 [1571,] 3.647510e-01 0.20114392 -6.198e-16 [1572,] 3.661296e-01 0.20051114 1.743e-16 [1573,] 3.675135e-01 0.19987991 -5.756e-16 [1574,] 3.689026e-01 0.19925021 5.056e-17 [1575,] 3.702969e-01 0.19862206 -7.704e-16 [1576,] 3.716965e-01 0.19799545 3.666e-16 [1577,] 3.731014e-01 0.19737037 -8.942e-16 [1578,] 3.745116e-01 0.19674683 -1.77e-16 [1579,] 3.759272e-01 0.19612482 8.085e-16 [1580,] 3.773481e-01 0.19550435 -4.383e-16 [1581,] 3.787743e-01 0.19488541 -5.004e-17 [1582,] 3.802060e-01 0.19426800 5.028e-16 [1583,] 3.816430e-01 0.19365212 2.126e-16 [1584,] 3.830855e-01 0.19303777 5.853e-16 [1585,] 3.845335e-01 0.19242495 4.849e-16 [1586,] 3.859869e-01 0.19181364 5.855e-16 [1587,] 3.874458e-01 0.19120387 -4.346e-16 [1588,] 3.889102e-01 0.19059561 -1.255e-16 [1589,] 3.903802e-01 0.18998888 8.808e-17 [1590,] 3.918557e-01 0.18938366 -7.575e-17 [1591,] 3.933368e-01 0.18877996 1.043e-15 [1592,] 3.948235e-01 0.18817778 2.023e-16 [1593,] 3.963158e-01 0.18757711 -2.089e-16 [1594,] 3.978137e-01 0.18697795 -1.615e-15 [1595,] 3.993174e-01 0.18638030 -3.93e-16 [1596,] 4.008267e-01 0.18578417 -2.194e-16 [1597,] 4.023417e-01 0.18518954 1.559e-16 [1598,] 4.038624e-01 0.18459642 -1.157e-15 [1599,] 4.053889e-01 0.18400480 6.487e-16 [1600,] 4.069211e-01 0.18341469 -1.516e-15 [1601,] 4.084591e-01 0.18282608 -1.421e-16 [1602,] 4.100030e-01 0.18223896 -1.141e-15 [1603,] 4.115527e-01 0.18165335 -1.281e-15 [1604,] 4.131082e-01 0.18106923 4.074e-16 [1605,] 4.146696e-01 0.18048661 4.134e-17 [1606,] 4.162370e-01 0.17990549 -1.03e-15 [1607,] 4.178102e-01 0.17932585 5.916e-18 [1608,] 4.193894e-01 0.17874770 -2.425e-16 [1609,] 4.209746e-01 0.17817105 2.063e-16 [1610,] 4.225657e-01 0.17759588 5.442e-16 [1611,] 4.241629e-01 0.17702219 -3.431e-16 [1612,] 4.257661e-01 0.17644999 -5.287e-17 [1613,] 4.273754e-01 0.17587927 -8.467e-16 [1614,] 4.289907e-01 0.17531003 -8.31e-16 [1615,] 4.306122e-01 0.17474227 -6.29e-16 [1616,] 4.322398e-01 0.17417599 -6.413e-16 [1617,] 4.338735e-01 0.17361118 -1.068e-15 [1618,] 4.355134e-01 0.17304784 1.413e-16 [1619,] 4.371595e-01 0.17248598 -5.43e-17 [1620,] 4.388118e-01 0.17192558 -4.358e-16 [1621,] 4.404704e-01 0.17136666 -1.251e-15 [1622,] 4.421352e-01 0.17080919 -4.14e-16 [1623,] 4.438064e-01 0.17025320 4.618e-16 [1624,] 4.454838e-01 0.16969866 -1.025e-15 [1625,] 4.471676e-01 0.16914559 -6.728e-16 [1626,] 4.488578e-01 0.16859398 3.475e-16 [1627,] 4.505543e-01 0.16804382 -4.854e-16 [1628,] 4.522573e-01 0.16749512 1.146e-16 [1629,] 4.539667e-01 0.16694787 -3.539e-16 [1630,] 4.556825e-01 0.16640207 -3.153e-16 [1631,] 4.574049e-01 0.16585772 -5.267e-16 [1632,] 4.591337e-01 0.16531483 9.008e-17 [1633,] 4.608691e-01 0.16477337 3.724e-16 [1634,] 4.626110e-01 0.16423336 -1.104e-15 [1635,] 4.643596e-01 0.16369480 1.283e-17 [1636,] 4.661147e-01 0.16315767 -9.83e-16 [1637,] 4.678765e-01 0.16262198 -1.704e-16 [1638,] 4.696449e-01 0.16208773 7.588e-16 [1639,] 4.714200e-01 0.16155492 -1.44e-15 [1640,] 4.732018e-01 0.16102354 1.25e-15 [1641,] 4.749904e-01 0.16049358 4.519e-16 [1642,] 4.767857e-01 0.15996506 -6.245e-16 [1643,] 4.785878e-01 0.15943796 -5.04e-16 [1644,] 4.803967e-01 0.15891229 7.03e-17 [1645,] 4.822125e-01 0.15838805 -6.168e-16 [1646,] 4.840351e-01 0.15786522 9.04e-16 [1647,] 4.858646e-01 0.15734381 -2.579e-16 [1648,] 4.877010e-01 0.15682382 -1.943e-16 [1649,] 4.895444e-01 0.15630525 -3.954e-16 [1650,] 4.913947e-01 0.15578809 -3.713e-16 [1651,] 4.932520e-01 0.15527234 -7e-16 [1652,] 4.951164e-01 0.15475800 -3.931e-16 [1653,] 4.969878e-01 0.15424507 -8.736e-16 [1654,] 4.988662e-01 0.15373354 -2.568e-16 [1655,] 5.007518e-01 0.15322342 -9.073e-16 [1656,] 5.026445e-01 0.15271469 -1.324e-15 [1657,] 5.045443e-01 0.15220737 1.857e-16 [1658,] 5.064513e-01 0.15170144 -1.315e-15 [1659,] 5.083656e-01 0.15119691 -2.262e-15 [1660,] 5.102870e-01 0.15069378 9.427e-16 [1661,] 5.122158e-01 0.15019203 1.72e-16 [1662,] 5.141518e-01 0.14969167 1.832e-17 [1663,] 5.160951e-01 0.14919270 1.137e-16 [1664,] 5.180458e-01 0.14869512 -6.444e-17 [1665,] 5.200039e-01 0.14819892 2.359e-16 [1666,] 5.219693e-01 0.14770409 -1.585e-16 [1667,] 5.239422e-01 0.14721065 1.222e-15 [1668,] 5.259225e-01 0.14671858 3.188e-16 [1669,] 5.279104e-01 0.14622789 -7.751e-17 [1670,] 5.299057e-01 0.14573857 -8.038e-16 [1671,] 5.319086e-01 0.14525062 -5.876e-16 [1672,] 5.339190e-01 0.14476404 -1.059e-15 [1673,] 5.359371e-01 0.14427883 -1.882e-15 [1674,] 5.379628e-01 0.14379497 5.84e-16 [1675,] 5.399961e-01 0.14331248 -3.253e-16 [1676,] 5.420371e-01 0.14283135 1.764e-16 [1677,] 5.440859e-01 0.14235158 -1.551e-15 [1678,] 5.461423e-01 0.14187316 2.928e-16 [1679,] 5.482066e-01 0.14139610 -1.068e-15 [1680,] 5.502786e-01 0.14092039 -2.062e-15 [1681,] 5.523585e-01 0.14044602 -5.525e-16 [1682,] 5.544463e-01 0.13997300 9.956e-16 [1683,] 5.565419e-01 0.13950133 -1.363e-15 [1684,] 5.586455e-01 0.13903100 -2.88e-16 [1685,] 5.607570e-01 0.13856201 -5.278e-16 [1686,] 5.628765e-01 0.13809435 -9.562e-16 [1687,] 5.650040e-01 0.13762803 5.985e-16 [1688,] 5.671395e-01 0.13716305 -1.207e-15 [1689,] 5.692831e-01 0.13669939 -8.945e-16 [1690,] 5.714348e-01 0.13623707 -4.746e-17 [1691,] 5.735947e-01 0.13577607 -3.856e-16 [1692,] 5.757627e-01 0.13531640 -1.232e-17 [1693,] 5.779389e-01 0.13485805 3.008e-16 [1694,] 5.801233e-01 0.13440101 -5.096e-18 [1695,] 5.823160e-01 0.13394530 -5.266e-16 [1696,] 5.845170e-01 0.13349090 -9.822e-16 [1697,] 5.867263e-01 0.13303782 -2.835e-17 [1698,] 5.889439e-01 0.13258604 1.137e-16 [1699,] 5.911699e-01 0.13213558 -6.022e-16 [1700,] 5.934044e-01 0.13168642 -7.816e-18 [1701,] 5.956473e-01 0.13123856 -1.295e-16 [1702,] 5.978986e-01 0.13079201 -7.699e-16 [1703,] 6.001585e-01 0.13034675 1.986e-16 [1704,] 6.024269e-01 0.12990280 9.597e-17 [1705,] 6.047039e-01 0.12946013 -1.334e-15 [1706,] 6.069895e-01 0.12901877 -5.002e-16 [1707,] 6.092837e-01 0.12857869 -7.604e-16 [1708,] 6.115867e-01 0.12813990 9.921e-16 [1709,] 6.138983e-01 0.12770239 -3.948e-16 [1710,] 6.162186e-01 0.12726617 -8.623e-16 [1711,] 6.185477e-01 0.12683123 -3.212e-16 [1712,] 6.208856e-01 0.12639757 -6.225e-16 [1713,] 6.232324e-01 0.12596518 2.979e-16 [1714,] 6.255880e-01 0.12553407 2.84e-17 [1715,] 6.279526e-01 0.12510423 1.025e-15 [1716,] 6.303260e-01 0.12467566 -1.388e-18 [1717,] 6.327085e-01 0.12424836 6.73e-16 [1718,] 6.350999e-01 0.12382232 1.104e-15 [1719,] 6.375004e-01 0.12339754 -5.357e-16 [1720,] 6.399099e-01 0.12297403 -1.313e-16 [1721,] 6.423286e-01 0.12255177 -2.243e-16 [1722,] 6.447564e-01 0.12213076 5.531e-16 [1723,] 6.471934e-01 0.12171101 -8.83e-16 [1724,] 6.496396e-01 0.12129251 -6.394e-16 [1725,] 6.520950e-01 0.12087526 -1.733e-15 [1726,] 6.545597e-01 0.12045926 3.46e-16 [1727,] 6.570338e-01 0.12004449 -8.612e-16 [1728,] 6.595172e-01 0.11963097 -8.904e-16 [1729,] 6.620099e-01 0.11921869 -1.33e-16 [1730,] 6.645121e-01 0.11880764 -1.115e-16 [1731,] 6.670238e-01 0.11839783 -1.151e-15 [1732,] 6.695449e-01 0.11798924 -1.458e-15 [1733,] 6.720756e-01 0.11758189 -2.222e-15 [1734,] 6.746158e-01 0.11717576 -1.044e-15 [1735,] 6.771657e-01 0.11677086 -1.044e-15 [1736,] 6.797252e-01 0.11636718 -1.998e-15 [1737,] 6.822943e-01 0.11596472 3.001e-18 [1738,] 6.848732e-01 0.11556348 2.869e-16 [1739,] 6.874618e-01 0.11516345 -1.274e-15 [1740,] 6.900602e-01 0.11476463 -6.112e-16 [1741,] 6.926684e-01 0.11436702 -1.544e-15 [1742,] 6.952865e-01 0.11397062 2.232e-17 [1743,] 6.979144e-01 0.11357542 -1.518e-15 [1744,] 7.005523e-01 0.11318143 -1.89e-15 [1745,] 7.032002e-01 0.11278863 1.37e-16 [1746,] 7.058581e-01 0.11239704 -1.57e-15 [1747,] 7.085260e-01 0.11200663 -4.838e-16 [1748,] 7.112040e-01 0.11161742 -2.345e-16 [1749,] 7.138922e-01 0.11122940 1.059e-15 [1750,] 7.165905e-01 0.11084257 3.715e-17 [1751,] 7.192990e-01 0.11045692 -1.808e-16 [1752,] 7.220177e-01 0.11007246 -1.191e-15 [1753,] 7.247467e-01 0.10968918 -1.643e-15 [1754,] 7.274860e-01 0.10930707 -1.244e-15 [1755,] 7.302357e-01 0.10892614 -2.028e-15 [1756,] 7.329957e-01 0.10854638 1.307e-15 [1757,] 7.357662e-01 0.10816779 -1.078e-15 [1758,] 7.385472e-01 0.10779037 3.187e-16 [1759,] 7.413387e-01 0.10741412 1.588e-16 [1760,] 7.441407e-01 0.10703903 -1.054e-15 [1761,] 7.469534e-01 0.10666510 1.241e-15 [1762,] 7.497766e-01 0.10629232 3.308e-16 [1763,] 7.526105e-01 0.10592071 9.225e-16 [1764,] 7.554552e-01 0.10555024 -7.354e-16 [1765,] 7.583106e-01 0.10518093 -4.656e-16 [1766,] 7.611767e-01 0.10481276 2.157e-16 [1767,] 7.640538e-01 0.10444574 8.45e-16 [1768,] 7.669416e-01 0.10407986 -1.974e-15 [1769,] 7.698404e-01 0.10371512 -8.008e-16 [1770,] 7.727502e-01 0.10335153 7.169e-16 [1771,] 7.756710e-01 0.10298906 -1.049e-15 [1772,] 7.786028e-01 0.10262773 -2.062e-16 [1773,] 7.815456e-01 0.10226753 -1.546e-15 [1774,] 7.844996e-01 0.10190846 -6.437e-16 [1775,] 7.874648e-01 0.10155051 -9.851e-16 [1776,] 7.904412e-01 0.10119369 -8.18e-16 [1777,] 7.934288e-01 0.10083799 -3.283e-16 [1778,] 7.964277e-01 0.10048340 -7.719e-17 [1779,] 7.994380e-01 0.10012993 -1.285e-15 [1780,] 8.024596e-01 0.09977758 -1.14e-15 [1781,] 8.054927e-01 0.09942633 -1.6e-15 [1782,] 8.085372e-01 0.09907619 -4.611e-16 [1783,] 8.115932e-01 0.09872716 -1.016e-15 [1784,] 8.146608e-01 0.09837923 2.247e-16 [1785,] 8.177399e-01 0.09803240 -2.668e-16 [1786,] 8.208307e-01 0.09768667 -3.951e-16 [1787,] 8.239332e-01 0.09734204 -2.652e-15 [1788,] 8.270474e-01 0.09699850 -3.016e-15 [1789,] 8.301734e-01 0.09665604 1.873e-17 [1790,] 8.333112e-01 0.09631468 5.087e-16 [1791,] 8.364609e-01 0.09597440 -3.853e-16 [1792,] 8.396225e-01 0.09563520 -5.77e-17 [1793,] 8.427960e-01 0.09529709 2.825e-16 [1794,] 8.459815e-01 0.09496005 -6.892e-17 [1795,] 8.491790e-01 0.09462409 1.059e-15 [1796,] 8.523887e-01 0.09428920 -2.288e-15 [1797,] 8.556104e-01 0.09395538 4.936e-16 [1798,] 8.588444e-01 0.09362263 -7.284e-16 [1799,] 8.620906e-01 0.09329094 4.545e-16 [1800,] 8.653490e-01 0.09296032 -1.448e-15 [1801,] 8.686197e-01 0.09263076 3.391e-16 [1802,] 8.719029e-01 0.09230225 -1.105e-15 [1803,] 8.751984e-01 0.09197480 2.261e-16 [1804,] 8.785064e-01 0.09164840 4.227e-16 [1805,] 8.818268e-01 0.09132305 -7.896e-17 [1806,] 8.851599e-01 0.09099875 -6.838e-16 [1807,] 8.885055e-01 0.09067550 3.989e-16 [1808,] 8.918638e-01 0.09035328 -7.927e-16 [1809,] 8.952348e-01 0.09003211 -8.374e-16 [1810,] 8.986185e-01 0.08971198 -1.243e-15 [1811,] 9.020150e-01 0.08939288 3.522e-16 [1812,] 9.054243e-01 0.08907481 -1.826e-15 [1813,] 9.088465e-01 0.08875777 4.213e-17 [1814,] 9.122817e-01 0.08844176 -6.081e-16 [1815,] 9.157299e-01 0.08812677 -7.828e-16 [1816,] 9.191910e-01 0.08781281 -5.659e-16 [1817,] 9.226653e-01 0.08749987 6.681e-16 [1818,] 9.261527e-01 0.08718794 -8.353e-16 [1819,] 9.296533e-01 0.08687703 -5.122e-16 [1820,] 9.331671e-01 0.08656713 3.776e-17 [1821,] 9.366941e-01 0.08625824 -4.529e-16 [1822,] 9.402346e-01 0.08595036 2.028e-16 [1823,] 9.437884e-01 0.08564348 -5.387e-16 [1824,] 9.473556e-01 0.08533761 -1.227e-15 [1825,] 9.509363e-01 0.08503273 8.258e-16 [1826,] 9.545305e-01 0.08472885 -1.687e-15 [1827,] 9.581384e-01 0.08442597 -1.437e-15 [1828,] 9.617598e-01 0.08412408 -9.479e-16 [1829,] 9.653950e-01 0.08382318 2.578e-16 [1830,] 9.690439e-01 0.08352326 1.359e-15 [1831,] 9.727066e-01 0.08322433 -2.198e-15 [1832,] 9.763831e-01 0.08292639 6.445e-16 [1833,] 9.800735e-01 0.08262942 -1.232e-15 [1834,] 9.837779e-01 0.08233343 -1.827e-15 [1835,] 9.874963e-01 0.08203841 6.758e-17 [1836,] 9.912287e-01 0.08174437 -8.212e-16 [1837,] 9.949753e-01 0.08145129 8.057e-16 [1838,] 9.987360e-01 0.08115919 1.383e-15 [1839,] 1.002511 0.08086804 -4.681e-16 [1840,] 1.006300 0.08057786 3.158e-16 [1841,] 1.010104 0.08028864 -1.174e-15 [1842,] 1.013921 0.08000038 -2.007e-15 [1843,] 1.017754 0.07971307 -3.548e-15 [1844,] 1.021601 0.07942671 7.136e-16 [1845,] 1.025462 0.07914130 -6.84e-16 [1846,] 1.029338 0.07885684 -1.343e-15 [1847,] 1.033228 0.07857333 3.561e-16 [1848,] 1.037134 0.07829075 1.673e-15 [1849,] 1.041054 0.07800912 -2.801e-16 [1850,] 1.044989 0.07772842 -1.075e-15 [1851,] 1.048938 0.07744866 2.329e-15 [1852,] 1.052903 0.07716983 -1.756e-15 [1853,] 1.056883 0.07689193 1.56e-15 [1854,] 1.060877 0.07661496 1.04e-15 [1855,] 1.064887 0.07633891 -7.338e-16 [1856,] 1.068912 0.07606379 4.737e-16 [1857,] 1.072952 0.07578958 -1.814e-15 [1858,] 1.077008 0.07551630 -2.419e-15 [1859,] 1.081078 0.07524392 3.003e-16 [1860,] 1.085165 0.07497246 -6.242e-16 [1861,] 1.089266 0.07470191 -2.671e-15 [1862,] 1.093383 0.07443227 -7.352e-16 [1863,] 1.097516 0.07416353 -1.457e-15 [1864,] 1.101664 0.07389570 2.275e-15 [1865,] 1.105828 0.07362876 2.535e-15 [1866,] 1.110008 0.07336273 -1.42e-15 [1867,] 1.114203 0.07309758 -1.182e-15 [1868,] 1.118415 0.07283334 -3.873e-16 [1869,] 1.122642 0.07256998 2.524e-15 [1870,] 1.126885 0.07230751 -2.493e-16 [1871,] 1.131144 0.07204592 -3.711e-15 [1872,] 1.135420 0.07178522 -4.222e-16 [1873,] 1.139711 0.07152540 8.291e-16 [1874,] 1.144019 0.07126646 -7.988e-16 [1875,] 1.148343 0.07100839 -1.265e-16 [1876,] 1.152684 0.07075120 -1.558e-15 [1877,] 1.157040 0.07049487 -9.087e-16 [1878,] 1.161414 0.07023942 1.726e-15 [1879,] 1.165803 0.06998483 -5.183e-17 [1880,] 1.170210 0.06973111 -1.422e-15 [1881,] 1.174633 0.06947824 2.518e-15 [1882,] 1.179073 0.06922624 -7.119e-16 [1883,] 1.183529 0.06897509 9.497e-16 [1884,] 1.188002 0.06872480 -7.462e-16 [1885,] 1.192493 0.06847536 -2.578e-15 [1886,] 1.197000 0.06822676 2.651e-15 [1887,] 1.201524 0.06797902 -8.521e-16 [1888,] 1.206066 0.06773211 -2.211e-15 [1889,] 1.210624 0.06748606 1.676e-16 [1890,] 1.215200 0.06724084 1.965e-16 [1891,] 1.219793 0.06699645 1.441e-15 [1892,] 1.224404 0.06675291 -2.952e-15 [1893,] 1.229031 0.06651019 -2.416e-15 [1894,] 1.233677 0.06626830 -1.054e-15 [1895,] 1.238340 0.06602725 3.144e-15 [1896,] 1.243020 0.06578702 -1.917e-15 [1897,] 1.247718 0.06554761 -2.721e-15 [1898,] 1.252434 0.06530902 -1.939e-15 [1899,] 1.257168 0.06507125 -2.131e-15 [1900,] 1.261920 0.06483429 1.484e-15 [1901,] 1.266690 0.06459815 9.309e-16 [1902,] 1.271477 0.06436282 -3.867e-16 [1903,] 1.276283 0.06412830 -2.843e-15 [1904,] 1.281107 0.06389459 1.186e-15 [1905,] 1.285949 0.06366168 -4.652e-16 [1906,] 1.290810 0.06342957 -1.214e-15 [1907,] 1.295689 0.06319826 1.793e-16 [1908,] 1.300586 0.06296775 -7.672e-16 [1909,] 1.305502 0.06273803 1.388e-15 [1910,] 1.310436 0.06250911 4.136e-16 [1911,] 1.315389 0.06228098 3.217e-16 [1912,] 1.320361 0.06205363 -3.569e-15 [1913,] 1.325352 0.06182707 -1.09e-15 [1914,] 1.330361 0.06160129 1.838e-15 [1915,] 1.335389 0.06137630 5.138e-16 [1916,] 1.340437 0.06115208 -3.195e-15 [1917,] 1.345503 0.06092864 2.198e-15 [1918,] 1.350589 0.06070597 -5.86e-16 [1919,] 1.355694 0.06048408 9.79e-16 [1920,] 1.360818 0.06026295 3.056e-15 [1921,] 1.365961 0.06004259 2.699e-15 [1922,] 1.371124 0.05982300 4.03e-17 [1923,] 1.376306 0.05960416 -1.909e-15 [1924,] 1.381508 0.05938609 -1.619e-16 [1925,] 1.386730 0.05916878 7.599e-17 [1926,] 1.391972 0.05895222 2.312e-15 [1927,] 1.397233 0.05873642 -2.011e-15 [1928,] 1.402514 0.05852137 1.88e-16 [1929,] 1.407815 0.05830706 -1.501e-15 [1930,] 1.413136 0.05809350 8.322e-16 [1931,] 1.418477 0.05788069 -2.59e-15 [1932,] 1.423839 0.05766862 -1.602e-15 [1933,] 1.429220 0.05745729 -4.045e-15 [1934,] 1.434622 0.05724670 -5.737e-15 [1935,] 1.440045 0.05703684 -2.58e-15 [1936,] 1.445488 0.05682772 2.042e-15 [1937,] 1.450951 0.05661932 1.187e-15 [1938,] 1.456435 0.05641166 -3.626e-15 [1939,] 1.461940 0.05620472 2.141e-16 [1940,] 1.467466 0.05599851 9.299e-16 [1941,] 1.473013 0.05579302 3.592e-15 [1942,] 1.478580 0.05558824 4.964e-15 [1943,] 1.484169 0.05538419 -5.402e-15 [1944,] 1.489778 0.05518085 3.912e-16 [1945,] 1.495409 0.05497823 -6.289e-15 [1946,] 1.501061 0.05477631 2.456e-15 [1947,] 1.506735 0.05457511 4.12e-15 [1948,] 1.512430 0.05437461 2.574e-15 [1949,] 1.518147 0.05417482 -2.724e-15 [1950,] 1.523885 0.05397573 1.141e-15 [1951,] 1.529644 0.05377734 -1.981e-15 [1952,] 1.535426 0.05357965 -2.582e-15 [1953,] 1.541229 0.05338265 -9.349e-16 [1954,] 1.547055 0.05318635 1.021e-15 [1955,] 1.552902 0.05299073 -1.744e-15 [1956,] 1.558772 0.05279581 -1.408e-15 [1957,] 1.564663 0.05260158 -2.171e-15 [1958,] 1.570577 0.05240803 -8.398e-16 [1959,] 1.576514 0.05221516 -2.951e-15 [1960,] 1.582472 0.05202298 1.318e-15 [1961,] 1.588454 0.05183147 -2.924e-15 [1962,] 1.594458 0.05164064 -2.468e-16 [1963,] 1.600484 0.05145049 -5.71e-16 [1964,] 1.606533 0.05126100 8.692e-16 [1965,] 1.612606 0.05107219 2.484e-17 [1966,] 1.618701 0.05088404 1.327e-15 [1967,] 1.624819 0.05069657 -1.618e-15 [1968,] 1.630960 0.05050975 -2.173e-15 [1969,] 1.637125 0.05032360 -1.718e-15 [1970,] 1.643313 0.05013811 -2.544e-15 [1971,] 1.649524 0.04995327 1.617e-16 [1972,] 1.655759 0.04976909 -3.492e-15 [1973,] 1.662017 0.04958556 -7.871e-16 [1974,] 1.668299 0.04940269 -3.591e-16 [1975,] 1.674604 0.04922046 2.503e-16 [1976,] 1.680934 0.04903889 -3.363e-15 [1977,] 1.687287 0.04885795 -3.969e-16 [1978,] 1.693665 0.04867766 -2.458e-15 [1979,] 1.700066 0.04849802 -4.059e-15 [1980,] 1.706492 0.04831901 -2.201e-15 [1981,] 1.712942 0.04814063 3.177e-16 [1982,] 1.719416 0.04796290 -4.841e-15 [1983,] 1.725915 0.04778579 -6.591e-15 [1984,] 1.732439 0.04760932 1.521e-15 [1985,] 1.738987 0.04743347 -3.311e-15 [1986,] 1.745560 0.04725826 1.542e-15 [1987,] 1.752157 0.04708366 6.898e-16 [1988,] 1.758780 0.04690969 9.416e-17 [1989,] 1.765428 0.04673634 5.156e-15 [1990,] 1.772100 0.04656361 -1.637e-15 [1991,] 1.778798 0.04639150 -1.54e-15 [1992,] 1.785522 0.04622000 -5.768e-16 [1993,] 1.792270 0.04604912 -5.491e-15 [1994,] 1.799045 0.04587884 1.75e-16 [1995,] 1.805844 0.04570918 2.485e-15 [1996,] 1.812670 0.04554012 -7.234e-15 [1997,] 1.819521 0.04537167 -3.603e-15 [1998,] 1.826399 0.04520381 -1.532e-15 [1999,] 1.833302 0.04503657 -2.359e-15 [2000,] 1.840231 0.04486991 -4.735e-15 [2001,] 1.847187 0.04470386 -1.351e-16 [2002,] 1.854168 0.04453840 -8.021e-16 [2003,] 1.861177 0.04437354 -3.029e-15 [2004,] 1.868211 0.04420926 2.626e-15 [2005,] 1.875273 0.04404558 9.737e-16 [2006,] 1.882360 0.04388248 -1.996e-15 [2007,] 1.889475 0.04371997 -4.155e-15 [2008,] 1.896617 0.04355804 4.594e-15 [2009,] 1.903785 0.04339670 1.529e-15 [2010,] 1.910981 0.04323593 2.103e-15 [2011,] 1.918204 0.04307574 6.296e-16 [2012,] 1.925454 0.04291613 8.562e-16 [2013,] 1.932732 0.04275709 -1.49e-15 [2014,] 1.940037 0.04259863 -1.85e-15 [2015,] 1.947370 0.04244073 -8.186e-15 [2016,] 1.954730 0.04228340 1.494e-15 [2017,] 1.962119 0.04212664 6.517e-15 [2018,] 1.969535 0.04197044 2.445e-16 [2019,] 1.976979 0.04181481 -6.152e-15 [2020,] 1.984451 0.04165974 -3.198e-15 [2021,] 1.991952 0.04150522 9.752e-18 [2022,] 1.999481 0.04135127 -1.122e-15 [2023,] 2.007038 0.04119787 1.619e-15 [2024,] 2.014624 0.04104502 -3.315e-15 [2025,] 2.022239 0.04089272 -2.242e-15 [2026,] 2.029883 0.04074098 3.008e-15 [2027,] 2.037555 0.04058978 -5.591e-15 [2028,] 2.045256 0.04043912 -3.44e-15 [2029,] 2.052987 0.04028902 3.512e-15 [2030,] 2.060746 0.04013945 -1.344e-15 [2031,] 2.068535 0.03999043 -1.161e-14 [2032,] 2.076354 0.03984194 2.467e-16 [2033,] 2.084202 0.03969399 -4.227e-15 [2034,] 2.092079 0.03954658 -1.864e-16 [2035,] 2.099987 0.03939970 4.424e-15 [2036,] 2.107924 0.03925335 5.364e-15 [2037,] 2.115891 0.03910753 -4.937e-15 [2038,] 2.123889 0.03896224 2.674e-15 [2039,] 2.131916 0.03881748 -4.884e-15 [2040,] 2.139974 0.03867324 3.795e-15 [2041,] 2.148063 0.03852952 -1.041e-15 [2042,] 2.156182 0.03838633 3.173e-15 [2043,] 2.164332 0.03824365 -1.094e-14 [2044,] 2.172512 0.03810149 -1.747e-15 [2045,] 2.180724 0.03795985 -4.156e-15 [2046,] 2.188966 0.03781872 -8.631e-16 [2047,] 2.197240 0.03767811 8.76e-15 [2048,] 2.205544 0.03753800 -2.333e-17 [2049,] 2.213881 0.03739840 -4.512e-15 [2050,] 2.222249 0.03725931 1.637e-15 [2051,] 2.230648 0.03712073 1.094e-15 [2052,] 2.239079 0.03698265 -1.016e-15 [2053,] 2.247542 0.03684507 1.954e-15 [2054,] 2.256037 0.03670799 -7.343e-15 [2055,] 2.264564 0.03657141 8.815e-15 [2056,] 2.273124 0.03643533 -3.75e-15 [2057,] 2.281715 0.03629974 -1.163e-16 [2058,] 2.290340 0.03616464 2.287e-15 [2059,] 2.298996 0.03603004 2.322e-15 [2060,] 2.307686 0.03589593 2.393e-15 [2061,] 2.316408 0.03576231 -4.001e-15 [2062,] 2.325163 0.03562917 7.919e-15 [2063,] 2.333952 0.03549652 -6.088e-15 [2064,] 2.342774 0.03536435 7.692e-15 [2065,] 2.351628 0.03523266 -1.908e-15 [2066,] 2.360517 0.03510145 4.311e-15 [2067,] 2.369439 0.03497072 -1.847e-15 [2068,] 2.378395 0.03484047 -6.013e-16 [2069,] 2.387384 0.03471070 2.413e-15 [2070,] 2.396408 0.03458139 -5.676e-15 [2071,] 2.405466 0.03445256 -6.746e-15 [2072,] 2.414557 0.03432420 -6.183e-15 [2073,] 2.423684 0.03419631 -7.864e-15 [2074,] 2.432845 0.03406889 -1.31e-14 [2075,] 2.442040 0.03394193 5.082e-15 [2076,] 2.451270 0.03381543 6.294e-16 [2077,] 2.460535 0.03368940 -4.532e-15 [2078,] 2.469835 0.03356383 5.593e-17 [2079,] 2.479170 0.03343872 1.786e-15 [2080,] 2.488541 0.03331406 -3.706e-15 [2081,] 2.497947 0.03318986 3.486e-17 [2082,] 2.507388 0.03306612 9.84e-16 [2083,] 2.516866 0.03294282 6.226e-15 [2084,] 2.526378 0.03281998 -2.4e-15 [2085,] 2.535927 0.03269759 1.471e-15 [2086,] 2.545512 0.03257565 5.955e-16 [2087,] 2.555134 0.03245415 -3.394e-15 [2088,] 2.564791 0.03233310 -6.065e-16 [2089,] 2.574485 0.03221249 7.551e-15 [2090,] 2.584216 0.03209232 2.621e-15 [2091,] 2.593984 0.03197260 6.198e-16 [2092,] 2.603788 0.03185331 5.632e-15 [2093,] 2.613630 0.03173446 6.96e-15 [2094,] 2.623508 0.03161605 -1.768e-15 [2095,] 2.633425 0.03149807 1.225e-14 [2096,] 2.643378 0.03138052 -4.228e-15 [2097,] 2.653369 0.03126340 4.802e-15 [2098,] 2.663398 0.03114672 5.122e-15 [2099,] 2.673465 0.03103046 9.716e-15 [2100,] 2.683570 0.03091463 -2.628e-16 [2101,] 2.693713 0.03079922 -3.655e-15 [2102,] 2.703894 0.03068424 -1.083e-14 [2103,] 2.714114 0.03056968 -2.751e-15 [2104,] 2.724373 0.03045554 -5.199e-15 [2105,] 2.734670 0.03034182 -9.545e-15 [2106,] 2.745006 0.03022852 -2.001e-14 [2107,] 2.755381 0.03011564 -9.947e-15 [2108,] 2.765796 0.03000317 -2.573e-15 [2109,] 2.776250 0.02989111 1.086e-14 [2110,] 2.786743 0.02977946 1.437e-14 [2111,] 2.797276 0.02966823 2.901e-15 [2112,] 2.807849 0.02955740 1.141e-14 [2113,] 2.818462 0.02944699 -2.503e-15 [2114,] 2.829115 0.02933697 -9.145e-15 [2115,] 2.839808 0.02922737 -5.264e-15 [2116,] 2.850542 0.02911817 1.52e-14 [2117,] 2.861316 0.02900936 -1.32e-14 [2118,] 2.872131 0.02890096 -1.929e-15 [2119,] 2.882986 0.02879296 6.094e-15 [2120,] 2.893883 0.02868536 -1.819e-14 [2121,] 2.904821 0.02857815 1.729e-15 [2122,] 2.915801 0.02847134 -4.923e-15 [2123,] 2.926821 0.02836492 -1.957e-15 [2124,] 2.937884 0.02825889 -9.779e-15 [2125,] 2.948988 0.02815326 1.284e-15 [2126,] 2.960134 0.02804801 -1.668e-14 [2127,] 2.971323 0.02794315 -6.288e-15 [2128,] 2.982554 0.02783868 1.341e-14 [2129,] 2.993827 0.02773460 -1.762e-15 [2130,] 3.005142 0.02763089 2.047e-14 [2131,] 3.016501 0.02752757 -3.802e-15 [2132,] 3.027902 0.02742464 9.456e-15 [2133,] 3.039347 0.02732208 -8.935e-15 [2134,] 3.050835 0.02721990 2.3e-14 [2135,] 3.062366 0.02711809 8.832e-15 [2136,] 3.073941 0.02701667 -1.739e-14 [2137,] 3.085559 0.02691561 3.67e-14 [2138,] 3.097222 0.02681493 -1.292e-14 [2139,] 3.108928 0.02671463 1.277e-14 [2140,] 3.120679 0.02661469 -4.227e-14 [2141,] 3.132474 0.02651512 1.998e-15 [2142,] 3.144314 0.02641592 3.547e-14 [2143,] 3.156199 0.02631709 -3.097e-16 [2144,] 3.168128 0.02621862 -4.147e-14 [2145,] 3.180103 0.02612051 3.88e-15 [2146,] 3.192122 0.02602277 -2.751e-14 [2147,] 3.204188 0.02592539 -4.672e-15 [2148,] 3.216299 0.02582837 2.133e-14 [2149,] 3.228455 0.02573171 3.707e-15 [2150,] 3.240658 0.02563540 -2.907e-14 [2151,] 3.252906 0.02553946 5.333e-15 [2152,] 3.265201 0.02544386 -2.067e-14 [2153,] 3.277543 0.02534862 -1.225e-14 [2154,] 3.289931 0.02525374 -1.29e-15 [2155,] 3.302366 0.02515920 -1.76e-14 [2156,] 3.314848 0.02506501 -8.576e-15 [2157,] 3.327377 0.02497118 1.201e-14 [2158,] 3.339953 0.02487769 2.425e-15 [2159,] 3.352577 0.02478454 3.987e-15 [2160,] 3.365249 0.02469175 -1.137e-14 [2161,] 3.377969 0.02459929 -2.833e-14 [2162,] 3.390736 0.02450718 1.043e-14 [2163,] 3.403552 0.02441541 -1.381e-14 [2164,] 3.416417 0.02432397 2.764e-15 [2165,] 3.429330 0.02423288 -2.095e-14 [2166,] 3.442292 0.02414213 -2.777e-14 [2167,] 3.455302 0.02405171 -8.692e-15 [2168,] 3.468362 0.02396162 2.8e-14 [2169,] 3.481472 0.02387187 5.828e-15 [2170,] 3.494631 0.02378246 -2.806e-14 [2171,] 3.507839 0.02369337 -6.228e-15 [2172,] 3.521098 0.02360462 -1.116e-14 [2173,] 3.534406 0.02351619 6.554e-15 [2174,] 3.547765 0.02342809 5.027e-15 [2175,] 3.561175 0.02334032 -1.557e-14 [2176,] 3.574635 0.02325288 1.773e-14 [2177,] 3.588146 0.02316576 -3.626e-15 [2178,] 3.601708 0.02307896 5.965e-15 [2179,] 3.615321 0.02299248 5.202e-15 [2180,] 3.628986 0.02290633 -1.359e-14 [2181,] 3.642703 0.02282049 3.184e-15 [2182,] 3.656471 0.02273498 2.588e-15 [2183,] 3.670291 0.02264978 1.591e-14 [2184,] 3.684164 0.02256489 2.367e-15 [2185,] 3.698089 0.02248033 -1.583e-14 [2186,] 3.712067 0.02239607 -2.267e-15 [2187,] 3.726097 0.02231213 2.653e-14 [2188,] 3.740181 0.02222850 -7.235e-15 [2189,] 3.754317 0.02214519 -1.133e-14 [2190,] 3.768507 0.02206218 -1.341e-15 [2191,] 3.782751 0.02197948 2.246e-14 [2192,] 3.797049 0.02189709 -3.414e-15 [2193,] 3.811401 0.02181500 3.123e-14 [2194,] 3.825807 0.02173322 -4.081e-14 [2195,] 3.840267 0.02165174 2.553e-14 [2196,] 3.854782 0.02157056 4.162e-15 [2197,] 3.869352 0.02148969 -2.068e-16 [2198,] 3.883977 0.02140912 5.858e-15 [2199,] 3.898657 0.02132885 1.111e-14 [2200,] 3.913393 0.02124887 1.784e-14 [2201,] 3.928184 0.02116920 2.004e-14 [2202,] 3.943032 0.02108982 2.115e-14 [2203,] 3.957935 0.02101073 -2.166e-14 [2204,] 3.972895 0.02093194 -1.834e-14 [2205,] 3.987911 0.02085344 -1.337e-14 [2206,] 4.002984 0.02077524 -1.782e-14 [2207,] 4.018114 0.02069732 3.492e-14 [2208,] 4.033301 0.02061970 -1.066e-14 [2209,] 4.048546 0.02054236 -1.643e-14 [2210,] 4.063848 0.02046531 2.873e-14 [2211,] 4.079208 0.02038855 -2.834e-15 [2212,] 4.094627 0.02031207 2.428e-14 [2213,] 4.110103 0.02023588 7.048e-15 [2214,] 4.125638 0.02015998 3.205e-16 [2215,] 4.141232 0.02008435 2.216e-14 [2216,] 4.156884 0.02000901 -1.197e-14 [2217,] 4.172596 0.01993395 8.496e-15 [2218,] 4.188367 0.01985916 -1.817e-14 [2219,] 4.204198 0.01978466 2.803e-14 [2220,] 4.220088 0.01971043 4.22e-14 [2221,] 4.236039 0.01963648 -1.142e-14 [2222,] 4.252050 0.01956281 -4.042e-15 [2223,] 4.268121 0.01948941 -3.662e-15 [2224,] 4.284254 0.01941628 7.838e-15 [2225,] 4.300447 0.01934342 -1.058e-14 [2226,] 4.316701 0.01927084 3.638e-14 [2227,] 4.333017 0.01919853 -3.42e-14 [2228,] 4.349394 0.01912649 1.33e-14 [2229,] 4.365834 0.01905471 2.927e-15 [2230,] 4.382335 0.01898320 -2.53e-15 [2231,] 4.398899 0.01891196 2.953e-14 [2232,] 4.415526 0.01884099 1.204e-18 [2233,] 4.432215 0.01877028 1.656e-14 [2234,] 4.448967 0.01869983 -3.022e-14 [2235,] 4.465783 0.01862965 9.523e-15 [2236,] 4.482662 0.01855973 2.432e-14 [2237,] 4.499605 0.01849007 -2.592e-14 [2238,] 4.516613 0.01842067 -2.806e-14 [2239,] 4.533684 0.01835152 -1.235e-14 [2240,] 4.550820 0.01828264 -2.499e-14 [2241,] 4.568021 0.01821401 -3.187e-14 [2242,] 4.585286 0.01814564 1.066e-14 [2243,] 4.602617 0.01807752 -1.584e-14 [2244,] 4.620014 0.01800966 -2.676e-14 [2245,] 4.637476 0.01794205 5.412e-14 [2246,] 4.655004 0.01787469 -4.056e-14 [2247,] 4.672599 0.01780759 5.187e-14 [2248,] 4.690260 0.01774073 -4.522e-14 [2249,] 4.707987 0.01767413 2.076e-14 [2250,] 4.725782 0.01760777 5.359e-15 [2251,] 4.743644 0.01754166 -1.136e-14 [2252,] 4.761574 0.01747580 5.553e-14 [2253,] 4.779571 0.01741018 1.348e-15 [2254,] 4.797636 0.01734481 2.047e-14 [2255,] 4.815770 0.01727969 -3.709e-14 [2256,] 4.833972 0.01721480 -3.184e-14 [2257,] 4.852243 0.01715016 -2.711e-14 [2258,] 4.870583 0.01708576 -1.427e-14 [2259,] 4.888992 0.01702160 1.085e-14 [2260,] 4.907471 0.01695768 -1.001e-13 [2261,] 4.926020 0.01689400 5.44e-15 [2262,] 4.944639 0.01683055 -6.957e-15 [2263,] 4.963328 0.01676735 -4.092e-14 [2264,] 4.982088 0.01670438 8.318e-14 [2265,] 5.000919 0.01664164 5.794e-14 [2266,] 5.019821 0.01657914 1.396e-14 [2267,] 5.038794 0.01651687 -5.058e-15 [2268,] 5.057839 0.01645484 8.617e-14 [2269,] 5.076956 0.01639304 -5.755e-15 [2270,] 5.096145 0.01633146 3.28e-14 [2271,] 5.115407 0.01627012 -5.38e-14 [2272,] 5.134742 0.01620901 5.241e-15 [2273,] 5.154150 0.01614813 -9.658e-15 [2274,] 5.173631 0.01608747 1.193e-14 [2275,] 5.193186 0.01602704 3.445e-14 [2276,] 5.212814 0.01596684 4.872e-14 [2277,] 5.232517 0.01590686 2.591e-14 [2278,] 5.252294 0.01584710 3.649e-14 [2279,] 5.272146 0.01578757 -7.908e-14 [2280,] 5.292073 0.01572827 3.314e-14 [2281,] 5.312076 0.01566918 1.114e-13 [2282,] 5.332154 0.01561031 1.814e-14 [2283,] 5.352308 0.01555167 3.136e-14 [2284,] 5.372538 0.01549324 -6.247e-14 [2285,] 5.392844 0.01543503 -5.404e-14 [2286,] 5.413228 0.01537704 3.201e-15 [2287,] 5.433688 0.01531927 2.81e-14 [2288,] 5.454226 0.01526171 -4.178e-14 [2289,] 5.474841 0.01520437 -9.667e-15 [2290,] 5.495534 0.01514725 -5.403e-15 [2291,] 5.516306 0.01509033 -8.227e-14 [2292,] 5.537156 0.01503363 1.659e-14 [2293,] 5.558084 0.01497714 2.683e-14 [2294,] 5.579092 0.01492087 4.75e-14 [2295,] 5.600179 0.01486480 5.193e-14 [2296,] 5.621346 0.01480894 4.224e-15 [2297,] 5.642593 0.01475330 -3.066e-14 [2298,] 5.663921 0.01469786 -1.7e-14 [2299,] 5.685329 0.01464263 -2.026e-14 [2300,] 5.706817 0.01458760 2.051e-14 [2301,] 5.728387 0.01453278 4.409e-14 [2302,] 5.750039 0.01447817 2.303e-14 [2303,] 5.771772 0.01442376 8.009e-14 [2304,] 5.793588 0.01436955 -2.318e-14 [2305,] 5.815486 0.01431555 -4.261e-14 [2306,] 5.837467 0.01426175 -8.204e-15 [2307,] 5.859530 0.01420815 6.023e-14 [2308,] 5.881678 0.01415475 1.341e-14 [2309,] 5.903909 0.01410155 4.04e-14 [2310,] 5.926223 0.01404855 -3.711e-14 [2311,] 5.948623 0.01399575 8.889e-14 [2312,] 5.971107 0.01394315 -1.541e-14 [2313,] 5.993676 0.01389074 -3.192e-14 [2314,] 6.016330 0.01383853 -8.833e-17 [2315,] 6.039070 0.01378652 -2.431e-14 [2316,] 6.061896 0.01373470 5.313e-15 [2317,] 6.084808 0.01368307 6.564e-14 [2318,] 6.107806 0.01363164 2.724e-14 [2319,] 6.130892 0.01358040 8.13e-15 [2320,] 6.154065 0.01352936 -5.284e-14 [2321,] 6.177325 0.01347850 -4.52e-14 [2322,] 6.200674 0.01342783 8.499e-14 [2323,] 6.224111 0.01337736 1.533e-14 [2324,] 6.247636 0.01332707 3.788e-15 [2325,] 6.271250 0.01327697 -8.382e-14 [2326,] 6.294953 0.01322706 -2.184e-14 [2327,] 6.318746 0.01317734 -7.617e-15 [2328,] 6.342629 0.01312780 9.123e-14 [2329,] 6.366602 0.01307845 1.999e-14 [2330,] 6.390666 0.01302928 -4.757e-14 [2331,] 6.414821 0.01298030 4.084e-14 [2332,] 6.439067 0.01293150 1.509e-14 [2333,] 6.463405 0.01288288 1.323e-14 [2334,] 6.487834 0.01283445 -2.391e-14 [2335,] 6.512356 0.01278620 -7.088e-14 [2336,] 6.536971 0.01273813 6.72e-14 [2337,] 6.561679 0.01269023 -1.627e-14 [2338,] 6.586480 0.01264252 7.57e-14 [2339,] 6.611375 0.01259499 8.834e-15 [2340,] 6.636364 0.01254763 -2.095e-14 [2341,] 6.661447 0.01250046 8.344e-14 [2342,] 6.686625 0.01245346 -1.133e-13 [2343,] 6.711899 0.01240663 -9.027e-15 [2344,] 6.737268 0.01235998 -4.447e-14 [2345,] 6.762733 0.01231351 -6.264e-14 [2346,] 6.788294 0.01226721 -3.056e-14 [2347,] 6.813951 0.01222108 -5.127e-14 [2348,] 6.839706 0.01217513 -1.224e-14 [2349,] 6.865558 0.01212935 3.846e-14 [2350,] 6.891508 0.01208374 -4.424e-14 [2351,] 6.917555 0.01203830 5.947e-14 [2352,] 6.943702 0.01199304 -5.158e-14 [2353,] 6.969947 0.01194794 -4.773e-14 [2354,] 6.996291 0.01190301 8.095e-14 [2355,] 7.022735 0.01185825 -5.359e-14 [2356,] 7.049279 0.01181366 -5.051e-14 [2357,] 7.075923 0.01176923 -4.753e-14 [2358,] 7.102667 0.01172497 -4.478e-14 [2359,] 7.129513 0.01168088 -4.224e-14 [2360,] 7.156461 0.01163695 -3.976e-14 [2361,] 7.183510 0.01159319 -3.756e-14 [2362,] 7.210661 0.01154959 -3.536e-14 [2363,] 7.237916 0.01150616 -3.33e-14 [2364,] 7.265273 0.01146289 -3.134e-14 [2365,] 7.292733 0.01141978 -2.956e-14 [2366,] 7.320297 0.01137683 -2.78e-14 [2367,] 7.347966 0.01133404 -2.638e-14 [2368,] 7.375739 0.01129142 -2.47e-14 [2369,] 7.403617 0.01124895 -2.333e-14 [2370,] 7.431600 0.01120664 -2.194e-14 [2371,] 7.459690 0.01116450 -2.069e-14 [2372,] 7.487885 0.01112251 -1.947e-14 [2373,] 7.516187 0.01108067 -1.841e-14 [2374,] 7.544596 0.01103900 -1.729e-14 [2375,] 7.573112 0.01099748 -1.633e-14 [2376,] 7.601736 0.01095612 -1.542e-14 [2377,] 7.630468 0.01091491 -1.454e-14 [2378,] 7.659309 0.01087385 -1.371e-14 [2379,] 7.688259 0.01083296 -1.286e-14 [2380,] 7.717318 0.01079221 -1.213e-14 [2381,] 7.746487 0.01075162 -1.153e-14 [2382,] 7.775767 0.01071118 -1.086e-14 [2383,] 7.805157 0.01067089 -1.009e-14 [2384,] 7.834658 0.01063075 -9.451e-15 [2385,] 7.864270 0.01059076 -9.1e-15 [2386,] 7.893995 0.01055093 -8.522e-15 [2387,] 7.923832 0.01051124 -8.044e-15 [2388,] 7.953781 0.01047170 -7.688e-15 [2389,] 7.983844 0.01043231 -7.122e-15 [2390,] 8.014021 0.01039307 -6.696e-15 [2391,] 8.044311 0.01035397 -6.251e-15 [2392,] 8.074716 0.01031503 -6.058e-15 [2393,] 8.105236 0.01027623 -5.635e-15 [2394,] 8.135871 0.01023757 -5.289e-15 [2395,] 8.166623 0.01019906 -4.891e-15 [2396,] 8.197490 0.01016069 -4.667e-15 [2397,] 8.228474 0.01012247 -4.389e-15 [2398,] 8.259575 0.01008439 -4.271e-15 [2399,] 8.290794 0.01004646 -3.964e-15 [2400,] 8.322130 0.01000866 -3.691e-15 [2401,] 8.353585 0.00997101 -3.533e-15 [2402,] 8.385159 0.00993350 -3.234e-15 [2403,] 8.416853 0.00989613 -3.199e-15 [2404,] 8.448666 0.00985890 -2.947e-15 [2405,] 8.480599 0.00982181 -2.764e-15 [2406,] 8.512653 0.00978486 -2.539e-15 [2407,] 8.544828 0.00974805 -2.478e-15 [2408,] 8.577125 0.00971138 -2.321e-15 [2409,] 8.609544 0.00967484 -2.183e-15 [2410,] 8.642086 0.00963845 -2.067e-15 [2411,] 8.674750 0.00960219 -1.966e-15 [2412,] 8.707538 0.00956606 -1.895e-15 [2413,] 8.740450 0.00953007 -1.711e-15 [2414,] 8.773486 0.00949422 -1.556e-15 [2415,] 8.806647 0.00945850 -1.563e-15 [2416,] 8.839933 0.00942291 -1.471e-15 [2417,] 8.873346 0.00938746 -1.353e-15 [2418,] 8.906884 0.00935214 -1.379e-15 [2419,] 8.940549 0.00931696 -1.215e-15 [2420,] 8.974342 0.00928190 -1.197e-15 [2421,] 9.008262 0.00924698 -1.06e-15 [2422,] 9.042311 0.00921219 -1.178e-15 [2423,] 9.076488 0.00917753 -9.78e-16 [2424,] 9.110794 0.00914300 -8.544e-16 [2425,] 9.145230 0.00910860 -8.876e-16 [2426,] 9.179796 0.00907433 -6.723e-16 [2427,] 9.214493 0.00904019 -8.086e-16 [2428,] 9.249321 0.00900617 -7.321e-16 [2429,] 9.284281 0.00897229 -5.711e-16 [2430,] 9.319372 0.00893853 -6.693e-16 [2431,] 9.354597 0.00890489 -4.883e-16 [2432,] 9.389954 0.00887139 -6.181e-16 [2433,] 9.425445 0.00883801 -5.661e-16 [2434,] 9.461071 0.00880475 -5.452e-16 [2435,] 9.496831 0.00877162 -4.961e-16 [2436,] 9.532726 0.00873862 -4.702e-16 [2437,] 9.568757 0.00870574 -5.151e-16 [2438,] 9.604924 0.00867298 -4.093e-16 [2439,] 9.641227 0.00864035 -3.837e-16 [2440,] 9.677668 0.00860783 -3.913e-16 [2441,] 9.714247 0.00857544 -4.478e-16 [2442,] 9.750964 0.00854318 -4.361e-16 [2443,] 9.787819 0.00851103 -2.638e-16 [2444,] 9.824814 0.00847900 -2.944e-16 [2445,] 9.861949 0.00844710 -2.341e-16 [2446,] 9.899224 0.00841531 -2.592e-16 [2447,] 9.936640 0.00838365 -2.482e-16 [2448,] 9.974198 0.00835210 -2.747e-16 [2449,] 1.001190e+01 0.00832067 -1.245e-16 [2450,] 1.004974e+01 0.00828936 -2.461e-16 [2451,] 1.008772e+01 0.00825817 -1.744e-16 [2452,] 1.012585e+01 0.00822709 -2.275e-16 [2453,] 1.016412e+01 0.00819613 -2.15e-16 [2454,] 1.020254e+01 0.00816529 -2.163e-16 [2455,] 1.024110e+01 0.00813456 -3.428e-16 [2456,] 1.027981e+01 0.00810395 -1.622e-16 [2457,] 1.031867e+01 0.00807346 -1.905e-16 [2458,] 1.035767e+01 0.00804308 -1.257e-16 [2459,] 1.039682e+01 0.00801281 -2.862e-16 [2460,] 1.043611e+01 0.00798265 -1.706e-17 [2461,] 1.047556e+01 0.00795261 -8.752e-17 [2462,] 1.051515e+01 0.00792269 6.158e-18 [2463,] 1.055490e+01 0.00789287 -1.885e-16 [2464,] 1.059479e+01 0.00786317 -1.801e-16 [2465,] 1.063484e+01 0.00783358 -8.043e-17 [2466,] 1.067503e+01 0.00780410 -2.301e-16 [2467,] 1.071538e+01 0.00777473 -6.615e-17 [2468,] 1.075588e+01 0.00774547 -7.332e-17 [2469,] 1.079654e+01 0.00771632 -8.664e-17 [2470,] 1.083734e+01 0.00768728 -1.51e-16 [2471,] 1.087831e+01 0.00765835 -1.263e-16 [2472,] 1.091942e+01 0.00762953 -7.272e-17 [2473,] 1.096070e+01 0.00760082 1.95e-18 [2474,] 1.100212e+01 0.00757221 -8.408e-17 [2475,] 1.104371e+01 0.00754372 -8.602e-17 [2476,] 1.108545e+01 0.00751533 -8.263e-17 [2477,] 1.112735e+01 0.00748704 -1.325e-16 [2478,] 1.116941e+01 0.00745887 -9.953e-17 [2479,] 1.121162e+01 0.00743080 -9.338e-17 [2480,] 1.125400e+01 0.00740283 -1.421e-16 [2481,] 1.129654e+01 0.00737497 -3.925e-17 [2482,] 1.133923e+01 0.00734721 -9.37e-17 [2483,] 1.138209e+01 0.00731956 -1.044e-16 [2484,] 1.142511e+01 0.00729201 -7.782e-17 [2485,] 1.146830e+01 0.00726457 -6.485e-17 [2486,] 1.151164e+01 0.00723723 -4.158e-17 [2487,] 1.155516e+01 0.00720999 -1.151e-17 [2488,] 1.159883e+01 0.00718286 -1.064e-16 [2489,] 1.164267e+01 0.00715582 -1.755e-16 [2490,] 1.168668e+01 0.00712889 -2.278e-17 [2491,] 1.173085e+01 0.00710206 -7.584e-17 [2492,] 1.177519e+01 0.00707533 -5.969e-17 [2493,] 1.181969e+01 0.00704870 -6.827e-17 [2494,] 1.186437e+01 0.00702217 -2.963e-17 [2495,] 1.190921e+01 0.00699574 1.099e-17 [2496,] 1.195422e+01 0.00696941 1.667e-17 [2497,] 1.199941e+01 0.00694318 -4.197e-17 [2498,] 1.204476e+01 0.00691705 2.013e-16 [2499,] 1.209029e+01 0.00689102 2.33e-16 [2500,] 1.213599e+01 0.00686508 1.72e-16 [2501,] 1.218186e+01 0.00683924 1.658e-16 [2502,] 1.222790e+01 0.00681350 1.05e-16 [2503,] 1.227412e+01 0.00678786 1.677e-16 [2504,] 1.232051e+01 0.00676231 8.33e-17 [2505,] 1.236708e+01 0.00673685 1.391e-16 [2506,] 1.241382e+01 0.00671150 1.65e-16 [2507,] 1.246074e+01 0.00668624 9.677e-17 [2508,] 1.250784e+01 0.00666107 1.112e-16 [2509,] 1.255511e+01 0.00663600 1.437e-16 [2510,] 1.260257e+01 0.00661102 -1.729e-17 [2511,] 1.265020e+01 0.00658614 7.789e-17 [2512,] 1.269802e+01 0.00656135 2.472e-17 [2513,] 1.274601e+01 0.00653665 2.398e-17 [2514,] 1.279419e+01 0.00651205 7.098e-17 [2515,] 1.284255e+01 0.00648754 3.207e-17 [2516,] 1.289109e+01 0.00646312 4.307e-17 [2517,] 1.293981e+01 0.00643879 3.536e-17 [2518,] 1.298872e+01 0.00641456 1.006e-16 [2519,] 1.303781e+01 0.00639041 -6.717e-17 [2520,] 1.308709e+01 0.00636636 5.961e-17 [2521,] 1.313656e+01 0.00634240 8.935e-18 [2522,] 1.318621e+01 0.00631852 1.292e-16 [2523,] 1.323605e+01 0.00629474 3.719e-17 [2524,] 1.328608e+01 0.00627105 -1.034e-16 [2525,] 1.333629e+01 0.00624744 -2.999e-17 [2526,] 1.338670e+01 0.00622393 7.071e-17 [2527,] 1.343730e+01 0.00620050 1.744e-17 [2528,] 1.348809e+01 0.00617716 -2.436e-17 [2529,] 1.353907e+01 0.00615391 -1.049e-16 [2530,] 1.359024e+01 0.00613075 -2.274e-17 [2531,] 1.364161e+01 0.00610767 1.034e-16 [2532,] 1.369317e+01 0.00608468 -6.556e-17 [2533,] 1.374493e+01 0.00606178 -1.133e-16 [2534,] 1.379688e+01 0.00603896 8.703e-17 [2535,] 1.384903e+01 0.00601623 -2.197e-17 [2536,] 1.390137e+01 0.00599358 -8.42e-17 [2537,] 1.395391e+01 0.00597102 -1.258e-17 [2538,] 1.400666e+01 0.00594854 -2.297e-17 [2539,] 1.405960e+01 0.00592615 -4.371e-17 [2540,] 1.411274e+01 0.00590384 -3.341e-19 [2541,] 1.416608e+01 0.00588162 3.759e-17 [2542,] 1.421962e+01 0.00585948 -9.778e-17 [2543,] 1.427337e+01 0.00583743 -1.324e-16 [2544,] 1.432732e+01 0.00581545 -7.992e-17 [2545,] 1.438147e+01 0.00579356 1.05e-16 [2546,] 1.443583e+01 0.00577175 -6.418e-17 [2547,] 1.449039e+01 0.00575003 -5.838e-17 [2548,] 1.454516e+01 0.00572838 -6.829e-17 [2549,] 1.460014e+01 0.00570682 -1.369e-16 [2550,] 1.465532e+01 0.00568534 -4.086e-17 [2551,] 1.471071e+01 0.00566393 -8.459e-17 [2552,] 1.476631e+01 0.00564261 -2.5e-17 [2553,] 1.482213e+01 0.00562137 -5.654e-17 [2554,] 1.487815e+01 0.00560021 -4.568e-17 [2555,] 1.493438e+01 0.00557913 -1.27e-16 [2556,] 1.499083e+01 0.00555813 -1.255e-17 [2557,] 1.504749e+01 0.00553721 8.979e-18 [2558,] 1.510437e+01 0.00551636 -9.535e-17 [2559,] 1.516146e+01 0.00549560 -9.201e-17 [2560,] 1.521876e+01 0.00547491 -3.207e-17 [2561,] 1.527629e+01 0.00545430 -8.574e-17 [2562,] 1.533403e+01 0.00543377 -8.596e-17 [2563,] 1.539198e+01 0.00541331 -3.958e-17 [2564,] 1.545016e+01 0.00539294 -7.519e-17 [2565,] 1.550856e+01 0.00537263 -3.479e-17 [2566,] 1.556717e+01 0.00535241 -6.752e-17 [2567,] 1.562601e+01 0.00533226 -9.269e-17 [2568,] 1.568508e+01 0.00531219 5.71e-17 [2569,] 1.574436e+01 0.00529219 -8.517e-20 [2570,] 1.580387e+01 0.00527227 -7.304e-17 [2571,] 1.586360e+01 0.00525242 2.073e-17 [2572,] 1.592356e+01 0.00523265 -5.648e-17 [2573,] 1.598375e+01 0.00521295 -1.264e-16 [2574,] 1.604416e+01 0.00519333 -1.215e-16 [2575,] 1.610480e+01 0.00517378 -1.383e-16 [2576,] 1.616568e+01 0.00515430 -1.881e-17 [2577,] 1.622678e+01 0.00513490 -7.515e-17 [2578,] 1.628811e+01 0.00511556 5.039e-17 [2579,] 1.634967e+01 0.00509631 8.106e-17 [2580,] 1.641147e+01 0.00507712 -1.268e-16 [2581,] 1.647350e+01 0.00505801 -3.541e-17 [2582,] 1.653576e+01 0.00503897 -4.727e-17 [2583,] 1.659826e+01 0.00502000 5.18e-17 [2584,] 1.666100e+01 0.00500110 -6.167e-17 [2585,] 1.672397e+01 0.00498227 -3.239e-17 [2586,] 1.678719e+01 0.00496352 4.481e-18 [2587,] 1.685064e+01 0.00494483 -6.916e-17 [2588,] 1.691433e+01 0.00492622 -1.162e-16 [2589,] 1.697826e+01 0.00490767 3.637e-17 [2590,] 1.704243e+01 0.00488920 -1.129e-16 [2591,] 1.710685e+01 0.00487079 8.483e-17 [2592,] 1.717150e+01 0.00485245 3.15e-17 [2593,] 1.723641e+01 0.00483419 5.27e-17 [2594,] 1.730156e+01 0.00481599 -8.356e-17 [2595,] 1.736695e+01 0.00479786 1.066e-17 [2596,] 1.743259e+01 0.00477979 -1.54e-16 [2597,] 1.749848e+01 0.00476180 -1.437e-16 [2598,] 1.756462e+01 0.00474387 -1.433e-16 [2599,] 1.763101e+01 0.00472601 7.254e-17 [2600,] 1.769765e+01 0.00470822 -4.327e-17 [2601,] 1.776454e+01 0.00469050 -5.48e-17 [2602,] 1.783169e+01 0.00467284 -7.576e-17 [2603,] 1.789908e+01 0.00465525 -8.525e-17 [2604,] 1.796674e+01 0.00463772 -1.782e-17 [2605,] 1.803465e+01 0.00462026 -2.027e-16 [2606,] 1.810281e+01 0.00460287 2.52e-17 [2607,] 1.817123e+01 0.00458554 -1.469e-16 [2608,] 1.823992e+01 0.00456828 -1.027e-16 [2609,] 1.830886e+01 0.00455108 -2.379e-17 [2610,] 1.837806e+01 0.00453395 1.216e-18 [2611,] 1.844752e+01 0.00451688 -8.183e-17 [2612,] 1.851725e+01 0.00449987 -9.334e-18 [2613,] 1.858724e+01 0.00448293 -1.957e-16 [2614,] 1.865749e+01 0.00446605 -1.275e-16 [2615,] 1.872801e+01 0.00444924 -4.784e-17 [2616,] 1.879880e+01 0.00443249 -6.622e-17 [2617,] 1.886985e+01 0.00441580 -1.96e-16 [2618,] 1.894117e+01 0.00439918 -1.492e-16 [2619,] 1.901277e+01 0.00438262 6.183e-17 [2620,] 1.908463e+01 0.00436612 -2.461e-17 [2621,] 1.915676e+01 0.00434968 -2.919e-18 [2622,] 1.922917e+01 0.00433330 -8.746e-17 [2623,] 1.930185e+01 0.00431699 -9.952e-17 [2624,] 1.937480e+01 0.00430074 -9.863e-17 [2625,] 1.944803e+01 0.00428455 1.595e-17 [2626,] 1.952154e+01 0.00426842 -3.873e-17 [2627,] 1.959533e+01 0.00425235 -1.057e-16 [2628,] 1.966939e+01 0.00423634 -9.643e-18 [2629,] 1.974374e+01 0.00422039 5.437e-17 [2630,] 1.981836e+01 0.00420450 -1.611e-16 [2631,] 1.989327e+01 0.00418867 -2.612e-18 [2632,] 1.996846e+01 0.00417290 -1.834e-16 [2633,] 2.004393e+01 0.00415719 -1.442e-16 [2634,] 2.011969e+01 0.00414154 -1.005e-16 [2635,] 2.019574e+01 0.00412595 9.174e-18 [2636,] 2.027207e+01 0.00411041 1.114e-17 [2637,] 2.034870e+01 0.00409494 -2.124e-18 [2638,] 2.042561e+01 0.00407952 -2.02e-17 [2639,] 2.050281e+01 0.00406416 -7.51e-17 [2640,] 2.058030e+01 0.00404886 -1.254e-17 [2641,] 2.065809e+01 0.00403362 -1.009e-16 [2642,] 2.073617e+01 0.00401843 -1.744e-16 [2643,] 2.081455e+01 0.00400330 -1.454e-16 [2644,] 2.089322e+01 0.00398823 -1.089e-16 [2645,] 2.097219e+01 0.00397321 -1.416e-16 [2646,] 2.105146e+01 0.00395826 -1.948e-16 [2647,] 2.113103e+01 0.00394335 -4.175e-18 [2648,] 2.121090e+01 0.00392851 -1.79e-16 [2649,] 2.129107e+01 0.00391372 2.623e-17 [2650,] 2.137154e+01 0.00389898 -5.57e-17 [2651,] 2.145232e+01 0.00388430 -7.711e-17 [2652,] 2.153340e+01 0.00386968 -1.767e-16 [2653,] 2.161479e+01 0.00385511 -6.741e-17 [2654,] 2.169649e+01 0.00384060 -2.241e-17 [2655,] 2.177850e+01 0.00382614 -1.503e-16 [2656,] 2.186081e+01 0.00381173 -1.053e-16 [2657,] 2.194344e+01 0.00379738 -5.019e-17 [2658,] 2.202638e+01 0.00378308 4.022e-19 [2659,] 2.210963e+01 0.00376884 -5.213e-18 [2660,] 2.219320e+01 0.00375465 6.385e-17 [2661,] 2.227708e+01 0.00374051 -8.749e-17 [2662,] 2.236128e+01 0.00372643 -1.033e-16 [2663,] 2.244580e+01 0.00371240 4.676e-17 [2664,] 2.253064e+01 0.00369842 -3.868e-17 [2665,] 2.261580e+01 0.00368450 -1.335e-16 [2666,] 2.270128e+01 0.00367063 -8.24e-17 [2667,] 2.278708e+01 0.00365681 -1.039e-16 [2668,] 2.287321e+01 0.00364304 -1.219e-16 [2669,] 2.295967e+01 0.00362932 3.764e-17 [2670,] 2.304645e+01 0.00361566 2.232e-18 [2671,] 2.313355e+01 0.00360205 -4.993e-17 [2672,] 2.322099e+01 0.00358849 -8.804e-17 [2673,] 2.330876e+01 0.00357497 -4.975e-17 [2674,] 2.339686e+01 0.00356151 -8.609e-17 [2675,] 2.348529e+01 0.00354811 -1.171e-16 [2676,] 2.357406e+01 0.00353475 -6.581e-17 [2677,] 2.366316e+01 0.00352144 5.948e-17 [2678,] 2.375260e+01 0.00350818 -4.264e-17 [2679,] 2.384238e+01 0.00349497 -4.056e-17 [2680,] 2.393250e+01 0.00348181 -5.238e-18 [2681,] 2.402295e+01 0.00346870 -4.244e-17 [2682,] 2.411375e+01 0.00345564 -1.314e-17 [2683,] 2.420490e+01 0.00344263 -9.224e-17 [2684,] 2.429638e+01 0.00342967 4.617e-17 [2685,] 2.438822e+01 0.00341676 1.799e-18 [2686,] 2.448040e+01 0.00340390 -3.779e-17 [2687,] 2.457292e+01 0.00339108 -1.407e-17 [2688,] 2.466580e+01 0.00337831 5.114e-17 [2689,] 2.475903e+01 0.00336559 -1.649e-17 [2690,] 2.485261e+01 0.00335292 -4.115e-17 [2691,] 2.494655e+01 0.00334030 3.99e-18 [2692,] 2.504084e+01 0.00332772 -2.138e-17 [2693,] 2.513549e+01 0.00331519 1.142e-17 [2694,] 2.523049e+01 0.00330271 -9.048e-17 [2695,] 2.532585e+01 0.00329027 -1.063e-16 [2696,] 2.542158e+01 0.00327789 -2.447e-17 [2697,] 2.551766e+01 0.00326554 -1.072e-16 [2698,] 2.561411e+01 0.00325325 -3.604e-17 [2699,] 2.571093e+01 0.00324100 -9.922e-17 [2700,] 2.580811e+01 0.00322880 -9.164e-17 [2701,] 2.590565e+01 0.00321664 -1.873e-17 [2702,] 2.600357e+01 0.00320453 -1.429e-17 [2703,] 2.610185e+01 0.00319247 2.031e-17 [2704,] 2.620051e+01 0.00318045 5.968e-17 [2705,] 2.629954e+01 0.00316847 9.818e-17 [2706,] 2.639894e+01 0.00315654 1.902e-16 [2707,] 2.649872e+01 0.00314466 3.206e-17 [2708,] 2.659888e+01 0.00313282 1.607e-16 [2709,] 2.669942e+01 0.00312102 -2.967e-17 [2710,] 2.680033e+01 0.00310927 6.887e-17 [2711,] 2.690163e+01 0.00309756 1.122e-17 [2712,] 2.700331e+01 0.00308590 -7.033e-17 [2713,] 2.710537e+01 0.00307428 2.828e-17 [2714,] 2.720782e+01 0.00306271 1.535e-17 [2715,] 2.731066e+01 0.00305118 3.825e-17 [2716,] 2.741389e+01 0.00303969 5.88e-17 [2717,] 2.751750e+01 0.00302824 5.792e-17 [2718,] 2.762151e+01 0.00301684 4.096e-17 [2719,] 2.772591e+01 0.00300548 1.487e-16 [2720,] 2.783071e+01 0.00299417 -4.015e-17 [2721,] 2.793590e+01 0.00298289 1.624e-18 [2722,] 2.804149e+01 0.00297166 1.384e-16 [2723,] 2.814747e+01 0.00296047 -6.089e-17 [2724,] 2.825386e+01 0.00294933 -6.875e-17 [2725,] 2.836065e+01 0.00293822 -6.541e-17 [2726,] 2.846785e+01 0.00292716 -3.155e-17 [2727,] 2.857545e+01 0.00291614 1.325e-16 [2728,] 2.868346e+01 0.00290516 -2.425e-17 [2729,] 2.879187e+01 0.00289422 4.98e-17 [2730,] 2.890069e+01 0.00288332 1.37e-16 [2731,] 2.900993e+01 0.00287247 3.026e-17 [2732,] 2.911958e+01 0.00286165 -4.13e-17 [2733,] 2.922964e+01 0.00285088 6.578e-18 [2734,] 2.934012e+01 0.00284014 -6.65e-17 [2735,] 2.945102e+01 0.00282945 -1.888e-17 [2736,] 2.956233e+01 0.00281879 4.849e-17 [2737,] 2.967407e+01 0.00280818 4.984e-17 [2738,] 2.978623e+01 0.00279761 6.885e-17 [2739,] 2.989881e+01 0.00278707 -6.32e-17 [2740,] 3.001182e+01 0.00277658 -1.57e-16 [2741,] 3.012526e+01 0.00276613 -1.253e-16 [2742,] 3.023912e+01 0.00275571 1.058e-16 [2743,] 3.035341e+01 0.00274534 3.45e-17 [2744,] 3.046814e+01 0.00273500 -4.866e-17 [2745,] 3.058330e+01 0.00272470 9.056e-17 [2746,] 3.069890e+01 0.00271444 -4.318e-17 [2747,] 3.081493e+01 0.00270422 7.443e-18 [2748,] 3.093140e+01 0.00269404 -1.256e-17 [2749,] 3.104831e+01 0.00268390 -9.732e-17 [2750,] 3.116566e+01 0.00267379 2.841e-17 [2751,] 3.128346e+01 0.00266372 -5.195e-17 [2752,] 3.140170e+01 0.00265369 -1.018e-16 [2753,] 3.152039e+01 0.00264370 1.179e-16 [2754,] 3.163953e+01 0.00263375 8.041e-17 [2755,] 3.175912e+01 0.00262383 3.81e-17 [2756,] 3.187916e+01 0.00261395 6.732e-17 [2757,] 3.199965e+01 0.00260411 -2.928e-17 [2758,] 3.212060e+01 0.00259431 -1.261e-16 [2759,] 3.224200e+01 0.00258454 4.268e-17 [2760,] 3.236387e+01 0.00257481 -9.217e-17 [2761,] 3.248619e+01 0.00256511 -1.301e-17 [2762,] 3.260898e+01 0.00255545 -4.915e-17 [2763,] 3.273223e+01 0.00254583 3.507e-17 [2764,] 3.285595e+01 0.00253625 -1.548e-17 [2765,] 3.298014e+01 0.00252670 9.645e-17 [2766,] 3.310479e+01 0.00251718 1.039e-17 [2767,] 3.322992e+01 0.00250770 1.538e-17 [2768,] 3.335552e+01 0.00249826 -2.552e-17 [2769,] 3.348159e+01 0.00248886 -3.558e-17 [2770,] 3.360814e+01 0.00247948 7.129e-17 [2771,] 3.373517e+01 0.00247015 5.411e-18 [2772,] 3.386268e+01 0.00246085 -9.003e-17 [2773,] 3.399067e+01 0.00245158 -6.849e-17 [2774,] 3.411914e+01 0.00244235 -6.3e-17 [2775,] 3.424810e+01 0.00243316 -7.176e-17 [2776,] 3.437755e+01 0.00242399 -8.798e-17 [2777,] 3.450749e+01 0.00241487 -7.077e-17 [2778,] 3.463791e+01 0.00240577 -8.816e-17 [2779,] 3.476884e+01 0.00239672 -1.374e-17 [2780,] 3.490025e+01 0.00238769 8.909e-17 [2781,] 3.503216e+01 0.00237870 1.13e-16 [2782,] 3.516457e+01 0.00236975 3.008e-17 [2783,] 3.529749e+01 0.00236082 -1.551e-16 [2784,] 3.543090e+01 0.00235193 -8.827e-17 [2785,] 3.556482e+01 0.00234308 -1.423e-16 [2786,] 3.569924e+01 0.00233426 -7.95e-17 [2787,] 3.583417e+01 0.00232547 5.339e-17 [2788,] 3.596962e+01 0.00231671 -3.827e-18 [2789,] 3.610557e+01 0.00230799 -7.747e-17 [2790,] 3.624204e+01 0.00229930 -1.275e-16 [2791,] 3.637902e+01 0.00229064 4.242e-17 [2792,] 3.651652e+01 0.00228201 2.152e-17 [2793,] 3.665454e+01 0.00227342 -7.475e-17 [2794,] 3.679309e+01 0.00226486 -1.079e-16 [2795,] 3.693215e+01 0.00225633 -8.855e-17 [2796,] 3.707175e+01 0.00224784 5.775e-17 [2797,] 3.721187e+01 0.00223938 5.855e-17 [2798,] 3.735251e+01 0.00223094 -5.435e-17 [2799,] 3.749370e+01 0.00222254 2.14e-17 [2800,] 3.763541e+01 0.00221417 -8.936e-17 [2801,] 3.777766e+01 0.00220584 4.405e-17 [2802,] 3.792045e+01 0.00219753 -4.934e-17 [2803,] 3.806378e+01 0.00218926 1.282e-18 [2804,] 3.820765e+01 0.00218101 8.21e-18 [2805,] 3.835206e+01 0.00217280 -3.863e-17 [2806,] 3.849702e+01 0.00216462 -7.713e-17 [2807,] 3.864252e+01 0.00215647 -1.612e-16 [2808,] 3.878858e+01 0.00214835 -5.546e-17 [2809,] 3.893519e+01 0.00214026 -1.377e-16 [2810,] 3.908235e+01 0.00213220 -1.394e-16 [2811,] 3.923007e+01 0.00212417 -8.353e-18 [2812,] 3.937835e+01 0.00211618 1.418e-18 [2813,] 3.952719e+01 0.00210821 5.353e-17 [2814,] 3.967659e+01 0.00210027 3.761e-17 [2815,] 3.982655e+01 0.00209236 1.759e-17 [2816,] 3.997709e+01 0.00208448 3.168e-17 [2817,] 4.012819e+01 0.00207664 -6.849e-17 [2818,] 4.027986e+01 0.00206882 4.82e-17 [2819,] 4.043211e+01 0.00206103 -3.469e-17 [2820,] 4.058493e+01 0.00205327 5.561e-17 [2821,] 4.073832e+01 0.00204553 -5.058e-17 [2822,] 4.089230e+01 0.00203783 -9.797e-17 [2823,] 4.104686e+01 0.00203016 -2.299e-17 [2824,] 4.120201e+01 0.00202252 -6.245e-17 [2825,] 4.135774e+01 0.00201490 -1.438e-16 [2826,] 4.151406e+01 0.00200731 -8.333e-17 [2827,] 4.167097e+01 0.00199976 3.265e-17 [2828,] 4.182847e+01 0.00199223 -2.071e-17 [2829,] 4.198657e+01 0.00198472 9.045e-17 [2830,] 4.214527e+01 0.00197725 -1.312e-16 [2831,] 4.230456e+01 0.00196981 -1.188e-16 [2832,] 4.246446e+01 0.00196239 8.093e-17 [2833,] 4.262496e+01 0.00195500 -2.262e-17 [2834,] 4.278607e+01 0.00194764 -5.707e-17 [2835,] 4.294779e+01 0.00194031 -2.979e-17 [2836,] 4.311012e+01 0.00193300 -1.808e-17 [2837,] 4.327306e+01 0.00192572 -1.943e-17 [2838,] 4.343662e+01 0.00191847 7.805e-17 [2839,] 4.360080e+01 0.00191125 3.634e-17 [2840,] 4.376560e+01 0.00190405 6.159e-17 [2841,] 4.393102e+01 0.00189688 -8.389e-17 [2842,] 4.409706e+01 0.00188974 -3.117e-17 [2843,] 4.426374e+01 0.00188262 2.703e-17 [2844,] 4.443104e+01 0.00187553 -9.069e-17 [2845,] 4.459898e+01 0.00186847 -1.164e-16 [2846,] 4.476755e+01 0.00186144 -7.135e-17 [2847,] 4.493675e+01 0.00185443 -3.374e-17 [2848,] 4.510660e+01 0.00184745 -6.386e-17 [2849,] 4.527709e+01 0.00184049 3.059e-18 [2850,] 4.544822e+01 0.00183356 -5.566e-17 [2851,] 4.562000e+01 0.00182665 -1.38e-17 [2852,] 4.579243e+01 0.00181978 -3.013e-17 [2853,] 4.596552e+01 0.00181292 -5.408e-17 [2854,] 4.613925e+01 0.00180610 3.019e-18 [2855,] 4.631364e+01 0.00179930 8.283e-18 [2856,] 4.648869e+01 0.00179252 2.51e-17 [2857,] 4.666441e+01 0.00178577 -3.431e-17 [2858,] 4.684079e+01 0.00177905 -1.073e-16 [2859,] 4.701783e+01 0.00177235 -7.562e-17 [2860,] 4.719554e+01 0.00176568 2.803e-17 [2861,] 4.737393e+01 0.00175903 -3.023e-17 [2862,] 4.755299e+01 0.00175241 -8.72e-17 [2863,] 4.773272e+01 0.00174581 -1.065e-16 [2864,] 4.791314e+01 0.00173923 -7.14e-17 [2865,] 4.809423e+01 0.00173268 -1.208e-16 [2866,] 4.827601e+01 0.00172616 4.575e-17 [2867,] 4.845848e+01 0.00171966 -1.013e-16 [2868,] 4.864164e+01 0.00171319 -5.966e-17 [2869,] 4.882549e+01 0.00170673 -3.764e-17 [2870,] 4.901004e+01 0.00170031 -1.605e-16 [2871,] 4.919528e+01 0.00169391 -1.542e-16 [2872,] 4.938122e+01 0.00168753 -1.67e-17 [2873,] 4.956787e+01 0.00168117 -5.343e-17 [2874,] 4.975522e+01 0.00167484 4.733e-17 [2875,] 4.994328e+01 0.00166854 -1.082e-16 [2876,] 5.013205e+01 0.00166225 6.615e-17 [2877,] 5.032153e+01 0.00165600 -8.557e-18 [2878,] 5.051173e+01 0.00164976 -1.257e-16 [2879,] 5.070265e+01 0.00164355 -5.722e-17 [2880,] 5.089429e+01 0.00163736 -1.138e-16 [2881,] 5.108666e+01 0.00163119 -3.759e-18 [2882,] 5.127975e+01 0.00162505 -9.802e-17 [2883,] 5.147357e+01 0.00161893 -3.759e-20 [2884,] 5.166813e+01 0.00161284 -3.301e-18 [2885,] 5.186341e+01 0.00160676 6.32e-17 [2886,] 5.205944e+01 0.00160071 3.649e-18 [2887,] 5.225621e+01 0.00159469 -1.657e-16 [2888,] 5.245372e+01 0.00158868 -1.869e-16 [2889,] 5.265198e+01 0.00158270 -5.446e-17 [2890,] 5.285099e+01 0.00157674 5.172e-18 [2891,] 5.305075e+01 0.00157080 -1.71e-17 [2892,] 5.325127e+01 0.00156489 -1.513e-17 [2893,] 5.345254e+01 0.00155900 -1.026e-16 [2894,] 5.365457e+01 0.00155313 -5.286e-17 [2895,] 5.385737e+01 0.00154728 3.972e-17 [2896,] 5.406094e+01 0.00154145 -1.363e-16 [2897,] 5.426527e+01 0.00153565 -2.756e-17 [2898,] 5.447038e+01 0.00152987 -1.606e-16 [2899,] 5.467626e+01 0.00152411 -4.888e-17 [2900,] 5.488292e+01 0.00151837 2.738e-17 [2901,] 5.509036e+01 0.00151265 -4.167e-17 [2902,] 5.529858e+01 0.00150695 9.002e-17 [2903,] 5.550759e+01 0.00150128 -1.33e-16 [2904,] 5.571740e+01 0.00149563 -5.243e-17 [2905,] 5.592799e+01 0.00149000 -6.303e-17 [2906,] 5.613938e+01 0.00148438 -1.228e-16 [2907,] 5.635157e+01 0.00147880 -1.668e-16 [2908,] 5.656456e+01 0.00147323 -3.539e-17 [2909,] 5.677836e+01 0.00146768 8.371e-17 [2910,] 5.699296e+01 0.00146215 7.424e-17 [2911,] 5.720838e+01 0.00145665 -2.526e-17 [2912,] 5.742461e+01 0.00145116 -2.607e-17 [2913,] 5.764166e+01 0.00144570 -1.856e-16 [2914,] 5.785953e+01 0.00144026 -6.842e-17 [2915,] 5.807822e+01 0.00143483 1.848e-17 [2916,] 5.829773e+01 0.00142943 -1.883e-17 [2917,] 5.851808e+01 0.00142405 2.195e-17 [2918,] 5.873926e+01 0.00141869 7.079e-17 [2919,] 5.896128e+01 0.00141334 -6.56e-17 [2920,] 5.918413e+01 0.00140802 -7.127e-17 [2921,] 5.940783e+01 0.00140272 -1.419e-16 [2922,] 5.963238e+01 0.00139744 -4.038e-17 [2923,] 5.985777e+01 0.00139218 -9.974e-17 [2924,] 6.008401e+01 0.00138693 -1.612e-16 [2925,] 6.031111e+01 0.00138171 -1.055e-16 [2926,] 6.053907e+01 0.00137651 -9.109e-17 [2927,] 6.076789e+01 0.00137133 -2.255e-17 [2928,] 6.099757e+01 0.00136616 -1.104e-16 [2929,] 6.122812e+01 0.00136102 -1.506e-16 [2930,] 6.145955e+01 0.00135589 -9.997e-17 [2931,] 6.169184e+01 0.00135079 -6.634e-17 [2932,] 6.192502e+01 0.00134570 -1.643e-16 [2933,] 6.215908e+01 0.00134063 -1.248e-16 [2934,] 6.239402e+01 0.00133559 -1.733e-16 [2935,] 6.262985e+01 0.00133056 -1.096e-16 [2936,] 6.286657e+01 0.00132555 -1.374e-16 [2937,] 6.310419e+01 0.00132056 -2.309e-16 [2938,] 6.334270e+01 0.00131558 1.707e-17 [2939,] 6.358212e+01 0.00131063 -1.428e-16 [2940,] 6.382244e+01 0.00130570 3.623e-17 [2941,] 6.406367e+01 0.00130078 -8.63e-17 [2942,] 6.430581e+01 0.00129588 -1.647e-16 [2943,] 6.454887e+01 0.00129100 -1.542e-16 [2944,] 6.479284e+01 0.00128614 -1.348e-16 [2945,] 6.503774e+01 0.00128130 -6.31e-18 [2946,] 6.528356e+01 0.00127647 -1.522e-16 [2947,] 6.553031e+01 0.00127167 -2.073e-16 [2948,] 6.577800e+01 0.00126688 -2.246e-16 [2949,] 6.602662e+01 0.00126211 -9.498e-17 [2950,] 6.627618e+01 0.00125736 3.878e-17 [2951,] 6.652668e+01 0.00125262 -6.172e-17 [2952,] 6.677813e+01 0.00124790 -1.609e-16 [2953,] 6.703053e+01 0.00124321 5.868e-17 [2954,] 6.728389e+01 0.00123852 -1.021e-16 [2955,] 6.753820e+01 0.00123386 -8.648e-17 [2956,] 6.779347e+01 0.00122921 -8.393e-17 [2957,] 6.804971e+01 0.00122459 -1.405e-16 [2958,] 6.830692e+01 0.00121998 -1.276e-16 [2959,] 6.856510e+01 0.00121538 -4.252e-17 [2960,] 6.882425e+01 0.00121080 -7.338e-17 [2961,] 6.908439e+01 0.00120625 -1.794e-17 [2962,] 6.934551e+01 0.00120170 -7.04e-17 [2963,] 6.960761e+01 0.00119718 -1.419e-16 [2964,] 6.987071e+01 0.00119267 -9.052e-17 [2965,] 7.013480e+01 0.00118818 -1.5e-16 [2966,] 7.039988e+01 0.00118371 1.155e-17 [2967,] 7.066597e+01 0.00117925 -1.523e-16 [2968,] 7.093307e+01 0.00117481 -1.597e-16 [2969,] 7.120117e+01 0.00117038 -7.85e-18 [2970,] 7.147029e+01 0.00116598 -1.973e-16 [2971,] 7.174043e+01 0.00116159 -2.16e-16 [2972,] 7.201159e+01 0.00115721 -1.476e-16 [2973,] 7.228377e+01 0.00115286 -2.386e-17 [2974,] 7.255698e+01 0.00114852 -5.108e-17 [2975,] 7.283122e+01 0.00114419 1.94e-17 [2976,] 7.310650e+01 0.00113988 -4.415e-17 [2977,] 7.338282e+01 0.00113559 6.364e-17 [2978,] 7.366019e+01 0.00113131 -6.673e-17 [2979,] 7.393860e+01 0.00112705 -8.676e-17 [2980,] 7.421806e+01 0.00112281 -2.947e-17 [2981,] 7.449859e+01 0.00111858 -9.641e-17 [2982,] 7.478017e+01 0.00111437 2.54e-17 [2983,] 7.506281e+01 0.00111017 -1.94e-16 [2984,] 7.534653e+01 0.00110599 -5.117e-17 [2985,] 7.563131e+01 0.00110183 -1.43e-17 [2986,] 7.591718e+01 0.00109768 -1.244e-16 [2987,] 7.620412e+01 0.00109355 -6.847e-17 [2988,] 7.649215e+01 0.00108943 -1.239e-16 [2989,] 7.678127e+01 0.00108533 -1.619e-16 [2990,] 7.707148e+01 0.00108124 -1.361e-16 [2991,] 7.736278e+01 0.00107717 -7.274e-17 [2992,] 7.765519e+01 0.00107311 -1.026e-16 [2993,] 7.794870e+01 0.00106907 -1.205e-18 [2994,] 7.824332e+01 0.00106505 -1.155e-16 [2995,] 7.853906e+01 0.00106104 1.012e-17 [2996,] 7.883591e+01 0.00105704 -7.588e-17 [2997,] 7.913389e+01 0.00105306 2.127e-17 [2998,] 7.943299e+01 0.00104910 3.974e-17 [2999,] 7.973322e+01 0.00104515 -1.229e-16 [3000,] 8.003459e+01 0.00104121 -1.898e-16 [3001,] 8.033710e+01 0.00103729 -4.711e-17 [3002,] 8.064075e+01 0.00103338 6.714e-17 [3003,] 8.094554e+01 0.00102949 -1.515e-16 [3004,] 8.125149e+01 0.00102562 5.235e-17 [3005,] 8.155860e+01 0.00102176 -3.805e-17 [3006,] 8.186686e+01 0.00101791 1.196e-16 [3007,] 8.217630e+01 0.00101407 -6.555e-17 [3008,] 8.248690e+01 0.00101026 -1.177e-16 [3009,] 8.279867e+01 0.00100645 -1.246e-16 [3010,] 8.311163e+01 0.00100266 1.173e-16 [3011,] 8.342576e+01 0.00099889 -1.895e-16 [3012,] 8.374109e+01 0.00099513 6.443e-18 [3013,] 8.405760e+01 0.00099138 1.134e-16 [3014,] 8.437531e+01 0.00098765 -4.221e-17 [3015,] 8.469423e+01 0.00098393 1.234e-17 [3016,] 8.501434e+01 0.00098022 2.961e-17 [3017,] 8.533567e+01 0.00097653 -2.815e-17 [3018,] 8.565822e+01 0.00097285 -6.402e-17 [3019,] 8.598198e+01 0.00096919 -4.695e-17 [3020,] 8.630696e+01 0.00096554 -3.887e-17 [3021,] 8.663318e+01 0.00096191 -4.896e-17 [3022,] 8.696062e+01 0.00095828 4.167e-17 [3023,] 8.728931e+01 0.00095468 -2.976e-17 [3024,] 8.761923e+01 0.00095108 5.942e-18 [3025,] 8.795041e+01 0.00094750 -8.431e-18 [3026,] 8.828283e+01 0.00094393 -7.769e-17 [3027,] 8.861652e+01 0.00094038 -5.753e-17 [3028,] 8.895146e+01 0.00093684 2.433e-17 [3029,] 8.928767e+01 0.00093331 -8.515e-17 [3030,] 8.962515e+01 0.00092979 -6.149e-17 [3031,] 8.996390e+01 0.00092629 -1.108e-16 [3032,] 9.030394e+01 0.00092281 -1.034e-16 [3033,] 9.064526e+01 0.00091933 -6.962e-17 [3034,] 9.098787e+01 0.00091587 2.094e-17 [3035,] 9.133178e+01 0.00091242 -1.03e-16 [3036,] 9.167698e+01 0.00090898 -2.384e-17 [3037,] 9.202350e+01 0.00090556 -4.374e-18 [3038,] 9.237132e+01 0.00090215 -7.952e-17 [3039,] 9.272045e+01 0.00089876 -1.772e-17 [3040,] 9.307091e+01 0.00089537 -6.489e-17 [3041,] 9.342269e+01 0.00089200 -3.209e-17 [3042,] 9.377579e+01 0.00088864 -1.848e-17 [3043,] 9.413024e+01 0.00088529 -4.458e-17 [3044,] 9.448602e+01 0.00088196 -4.621e-17 [3045,] 9.484315e+01 0.00087864 -1.089e-16 [3046,] 9.520163e+01 0.00087533 -1.002e-16 [3047,] 9.556146e+01 0.00087204 -3.593e-17 [3048,] 9.592265e+01 0.00086875 -3.78e-17 [3049,] 9.628521e+01 0.00086548 1.945e-17 [3050,] 9.664914e+01 0.00086222 -9.879e-17 [3051,] 9.701444e+01 0.00085898 -3.04e-17 [3052,] 9.738113e+01 0.00085574 -5.828e-17 [3053,] 9.774920e+01 0.00085252 -1.539e-16 [3054,] 9.811866e+01 0.00084931 5.59e-18 [3055,] 9.848952e+01 0.00084611 4.151e-17 [3056,] 9.886178e+01 0.00084292 8.289e-17 [3057,] 9.923545e+01 0.00083975 -1.338e-16 [3058,] 9.961053e+01 0.00083659 -1.021e-16 [3059,] 9.998702e+01 0.00083344 -1.231e-16 [3060,] 1.003649e+02 0.00083030 -3.341e-17 [3061,] 1.007443e+02 0.00082717 4.783e-17 [3062,] 1.011251e+02 0.00082406 4.262e-18 [3063,] 1.015073e+02 0.00082096 -7.911e-17 [3064,] 1.018910e+02 0.00081787 -7.734e-17 [3065,] 1.022761e+02 0.00081479 -9.212e-17 [3066,] 1.026627e+02 0.00081172 -1.326e-16 [3067,] 1.030507e+02 0.00080866 4.843e-17 [3068,] 1.034402e+02 0.00080562 -1.284e-16 [3069,] 1.038312e+02 0.00080258 -6.533e-18 [3070,] 1.042236e+02 0.00079956 -5.492e-18 [3071,] 1.046175e+02 0.00079655 2.549e-17 [3072,] 1.050130e+02 0.00079355 -1.151e-16 [3073,] 1.054099e+02 0.00079056 -1.311e-16 [3074,] 1.058083e+02 0.00078759 -9.079e-17 [3075,] 1.062082e+02 0.00078462 -1.909e-16 [3076,] 1.066097e+02 0.00078167 -1.205e-16 [3077,] 1.070126e+02 0.00077872 1.61e-18 [3078,] 1.074171e+02 0.00077579 -3.549e-19 [3079,] 1.078231e+02 0.00077287 -1.527e-17 [3080,] 1.082306e+02 0.00076996 5.288e-17 [3081,] 1.086397e+02 0.00076706 -9.465e-17 [3082,] 1.090503e+02 0.00076417 -9.473e-17 [3083,] 1.094625e+02 0.00076129 2.093e-17 [3084,] 1.098762e+02 0.00075843 7.538e-17 [3085,] 1.102915e+02 0.00075557 -1.022e-17 [3086,] 1.107084e+02 0.00075273 -1.08e-16 [3087,] 1.111268e+02 0.00074989 -1.005e-16 [3088,] 1.115469e+02 0.00074707 -2.66e-17 [3089,] 1.119685e+02 0.00074426 -3.493e-17 [3090,] 1.123917e+02 0.00074145 -5.67e-17 [3091,] 1.128165e+02 0.00073866 2.187e-17 [3092,] 1.132429e+02 0.00073588 8.22e-18 [3093,] 1.136709e+02 0.00073311 -1.054e-16 [3094,] 1.141006e+02 0.00073035 3.164e-17 [3095,] 1.145318e+02 0.00072760 6.517e-17 [3096,] 1.149647e+02 0.00072486 -1.56e-17 [3097,] 1.153993e+02 0.00072213 -1.198e-16 [3098,] 1.158354e+02 0.00071941 -1.098e-16 [3099,] 1.162733e+02 0.00071670 -1.046e-16 [3100,] 1.167127e+02 0.00071400 -6.266e-17 [3101,] 1.171539e+02 0.00071131 -5.88e-17 [3102,] 1.175967e+02 0.00070864 -1.68e-16 [3103,] 1.180412e+02 0.00070597 2.789e-17 [3104,] 1.184873e+02 0.00070331 -1.376e-16 [3105,] 1.189352e+02 0.00070066 -2.14e-16 [3106,] 1.193847e+02 0.00069802 -5.605e-17 [3107,] 1.198359e+02 0.00069539 -1.064e-16 [3108,] 1.202889e+02 0.00069278 6.811e-18 [3109,] 1.207435e+02 0.00069017 -1.074e-16 [3110,] 1.211999e+02 0.00068757 5.236e-17 [3111,] 1.216580e+02 0.00068498 -3.989e-17 [3112,] 1.221178e+02 0.00068240 2.567e-17 [3113,] 1.225794e+02 0.00067983 -9.777e-17 [3114,] 1.230427e+02 0.00067727 -1.214e-16 [3115,] 1.235078e+02 0.00067472 -5.904e-17 [3116,] 1.239746e+02 0.00067218 -2.058e-17 [3117,] 1.244432e+02 0.00066965 -1.778e-16 [3118,] 1.249136e+02 0.00066713 -5.42e-17 [3119,] 1.253857e+02 0.00066461 -2.094e-16 [3120,] 1.258596e+02 0.00066211 1.968e-17 [3121,] 1.263353e+02 0.00065962 -4.711e-17 [3122,] 1.268128e+02 0.00065714 -7.034e-17 [3123,] 1.272921e+02 0.00065466 2.872e-17 [3124,] 1.277733e+02 0.00065220 1.671e-17 [3125,] 1.282562e+02 0.00064974 -7.136e-17 [3126,] 1.287410e+02 0.00064729 -9.478e-17 [3127,] 1.292276e+02 0.00064486 3.029e-18 [3128,] 1.297160e+02 0.00064243 -8.416e-17 [3129,] 1.302063e+02 0.00064001 8.351e-17 [3130,] 1.306984e+02 0.00063760 2.796e-17 [3131,] 1.311924e+02 0.00063520 7.59e-17 [3132,] 1.316883e+02 0.00063281 -8.071e-17 [3133,] 1.321861e+02 0.00063042 -5.475e-18 [3134,] 1.326857e+02 0.00062805 -6.337e-17 [3135,] 1.331872e+02 0.00062568 -1.286e-16 [3136,] 1.336906e+02 0.00062333 -2.3e-17 [3137,] 1.341959e+02 0.00062098 9.258e-17 [3138,] 1.347031e+02 0.00061864 -2.566e-17 [3139,] 1.352123e+02 0.00061631 6.255e-17 [3140,] 1.357233e+02 0.00061399 -8.698e-17 [3141,] 1.362363e+02 0.00061168 -1.121e-16 [3142,] 1.367512e+02 0.00060938 -7.341e-17 [3143,] 1.372681e+02 0.00060708 -9.817e-18 [3144,] 1.377870e+02 0.00060480 -9.234e-17 [3145,] 1.383077e+02 0.00060252 -7.448e-17 [3146,] 1.388305e+02 0.00060025 -1.534e-16 [3147,] 1.393552e+02 0.00059799 -1.536e-17 [3148,] 1.398820e+02 0.00059574 -8.21e-17 [3149,] 1.404107e+02 0.00059350 -1.315e-16 [3150,] 1.409414e+02 0.00059126 -1.366e-16 [3151,] 1.414741e+02 0.00058903 -4.359e-17 [3152,] 1.420088e+02 0.00058682 6.655e-17 [3153,] 1.425456e+02 0.00058461 8.764e-18 [3154,] 1.430844e+02 0.00058241 -5.174e-17 [3155,] 1.436252e+02 0.00058021 3.355e-17 [3156,] 1.441680e+02 0.00057803 -1.031e-16 [3157,] 1.447129e+02 0.00057585 -6.326e-17 [3158,] 1.452599e+02 0.00057368 -7.77e-17 [3159,] 1.458089e+02 0.00057152 -1.369e-16 [3160,] 1.463601e+02 0.00056937 -8.7e-17 [3161,] 1.469133e+02 0.00056723 -1.721e-16 [3162,] 1.474685e+02 0.00056509 6.221e-18 [3163,] 1.480259e+02 0.00056296 -1.26e-16 [3164,] 1.485854e+02 0.00056084 -4.474e-18 [3165,] 1.491470e+02 0.00055873 -7.337e-17 [3166,] 1.497108e+02 0.00055663 3.247e-17 [3167,] 1.502766e+02 0.00055453 -1.71e-16 [3168,] 1.508446e+02 0.00055244 -1.339e-16 [3169,] 1.514148e+02 0.00055036 -2.206e-16 [3170,] 1.519871e+02 0.00054829 1.098e-17 [3171,] 1.525615e+02 0.00054623 -1.076e-16 [3172,] 1.531382e+02 0.00054417 2.344e-17 [3173,] 1.537170e+02 0.00054212 -1.098e-16 [3174,] 1.542980e+02 0.00054008 6.063e-17 [3175,] 1.548812e+02 0.00053805 3.361e-17 [3176,] 1.554666e+02 0.00053602 -1.589e-16 [3177,] 1.560542e+02 0.00053400 2.344e-17 [3178,] 1.566440e+02 0.00053199 -6.861e-17 [3179,] 1.572361e+02 0.00052999 2.321e-17 [3180,] 1.578304e+02 0.00052799 -8.577e-17 [3181,] 1.584270e+02 0.00052600 8.257e-17 [3182,] 1.590258e+02 0.00052402 -8.943e-17 [3183,] 1.596268e+02 0.00052205 2.366e-17 [3184,] 1.602302e+02 0.00052008 2.577e-18 [3185,] 1.608358e+02 0.00051813 -2.093e-17 [3186,] 1.614437e+02 0.00051618 -1.413e-16 [3187,] 1.620539e+02 0.00051423 -1.563e-16 [3188,] 1.626664e+02 0.00051230 2.488e-17 [3189,] 1.632813e+02 0.00051037 4.435e-18 [3190,] 1.638984e+02 0.00050844 6.55e-18 [3191,] 1.645179e+02 0.00050653 -1.446e-16 [3192,] 1.651397e+02 0.00050462 -1.07e-16 [3193,] 1.657639e+02 0.00050272 -4.43e-18 [3194,] 1.663904e+02 0.00050083 -1.033e-16 [3195,] 1.670193e+02 0.00049894 -1.21e-16 [3196,] 1.676506e+02 0.00049706 3.098e-17 [3197,] 1.682843e+02 0.00049519 -6.2e-18 [3198,] 1.689204e+02 0.00049333 -7.671e-17 [3199,] 1.695588e+02 0.00049147 -1.656e-18 [3200,] 1.701997e+02 0.00048962 -1.128e-16 [3201,] 1.708430e+02 0.00048778 -7.794e-17 [3202,] 1.714887e+02 0.00048594 1.611e-17 [3203,] 1.721369e+02 0.00048411 -7.969e-17 [3204,] 1.727875e+02 0.00048229 -7.004e-17 [3205,] 1.734406e+02 0.00048047 5.569e-17 [3206,] 1.740962e+02 0.00047866 -9.314e-17 [3207,] 1.747542e+02 0.00047686 1.348e-17 [3208,] 1.754147e+02 0.00047506 -2.984e-17 [3209,] 1.760777e+02 0.00047328 -4.942e-17 [3210,] 1.767433e+02 0.00047149 -9.103e-17 [3211,] 1.774113e+02 0.00046972 -1.174e-16 [3212,] 1.780819e+02 0.00046795 -9.147e-17 [3213,] 1.787549e+02 0.00046619 -5.984e-17 [3214,] 1.794306e+02 0.00046443 -1.516e-17 [3215,] 1.801088e+02 0.00046268 1.003e-17 [3216,] 1.807895e+02 0.00046094 4.784e-17 [3217,] 1.814729e+02 0.00045921 -3.962e-17 [3218,] 1.821588e+02 0.00045748 -3.255e-17 [3219,] 1.828473e+02 0.00045575 -4.219e-17 [3220,] 1.835384e+02 0.00045404 -9.778e-17 [3221,] 1.842321e+02 0.00045233 -5.377e-18 [3222,] 1.849284e+02 0.00045062 -1.18e-16 [3223,] 1.856274e+02 0.00044893 -7.965e-17 [3224,] 1.863290e+02 0.00044724 -1.545e-16 [3225,] 1.870333e+02 0.00044555 -3.558e-17 [3226,] 1.877402e+02 0.00044388 -1.32e-16 [3227,] 1.884498e+02 0.00044220 -5.104e-17 [3228,] 1.891621e+02 0.00044054 -6.386e-17 [3229,] 1.898771e+02 0.00043888 -2.725e-17 [3230,] 1.905948e+02 0.00043723 -1.218e-16 [3231,] 1.913152e+02 0.00043558 2.998e-17 [3232,] 1.920383e+02 0.00043394 -1.031e-16 [3233,] 1.927641e+02 0.00043231 -5.198e-17 [3234,] 1.934927e+02 0.00043068 -5.665e-17 [3235,] 1.942240e+02 0.00042906 -1.209e-16 [3236,] 1.949581e+02 0.00042744 -4.562e-18 [3237,] 1.956950e+02 0.00042583 6.689e-17 [3238,] 1.964347e+02 0.00042423 4.069e-17 [3239,] 1.971772e+02 0.00042263 -1.41e-16 [3240,] 1.979224e+02 0.00042104 -1.328e-16 [3241,] 1.986705e+02 0.00041945 -4.777e-17 [3242,] 1.994214e+02 0.00041788 -7.158e-17 [3243,] 2.001752e+02 0.00041630 8.632e-17 [3244,] 2.009318e+02 0.00041473 1.718e-17 [3245,] 2.016912e+02 0.00041317 -4.299e-17 [3246,] 2.024536e+02 0.00041162 3.896e-17 [3247,] 2.032188e+02 0.00041007 9.571e-17 [3248,] 2.039869e+02 0.00040852 5.922e-17 [3249,] 2.047579e+02 0.00040698 1.224e-16 [3250,] 2.055318e+02 0.00040545 1.279e-16 [3251,] 2.063087e+02 0.00040393 4.033e-17 [3252,] 2.070885e+02 0.00040240 5.443e-17 [3253,] 2.078712e+02 0.00040089 6.93e-18 [3254,] 2.086569e+02 0.00039938 1.145e-16 [3255,] 2.094455e+02 0.00039788 2.768e-17 [3256,] 2.102372e+02 0.00039638 2.032e-17 [3257,] 2.110318e+02 0.00039488 -6.663e-17 [3258,] 2.118294e+02 0.00039340 -7.207e-19 [3259,] 2.126301e+02 0.00039192 -1.677e-17 [3260,] 2.134338e+02 0.00039044 -2.098e-17 [3261,] 2.142405e+02 0.00038897 -1.667e-17 [3262,] 2.150502e+02 0.00038751 6.843e-17 [3263,] 2.158631e+02 0.00038605 -1.002e-16 [3264,] 2.166790e+02 0.00038459 -3.397e-17 [3265,] 2.174979e+02 0.00038315 -1.579e-17 [3266,] 2.183200e+02 0.00038170 -2.195e-17 [3267,] 2.191452e+02 0.00038027 2.978e-17 [3268,] 2.199735e+02 0.00037883 3.916e-17 [3269,] 2.208049e+02 0.00037741 -1.359e-18 [3270,] 2.216395e+02 0.00037599 1.514e-16 [3271,] 2.224772e+02 0.00037457 -8.836e-18 [3272,] 2.233181e+02 0.00037316 -1.277e-17 [3273,] 2.241622e+02 0.00037175 -5.196e-17 [3274,] 2.250095e+02 0.00037035 5.013e-17 [3275,] 2.258599e+02 0.00036896 -1.151e-16 [3276,] 2.267136e+02 0.00036757 4.035e-18 [3277,] 2.275705e+02 0.00036619 -1.395e-17 [3278,] 2.284307e+02 0.00036481 -2.672e-17 [3279,] 2.292941e+02 0.00036343 6.357e-18 [3280,] 2.301607e+02 0.00036207 -2.806e-17 [3281,] 2.310307e+02 0.00036070 -7.831e-17 [3282,] 2.319039e+02 0.00035934 -6.061e-17 [3283,] 2.327804e+02 0.00035799 -3.55e-17 [3284,] 2.336603e+02 0.00035664 -2.664e-17 [3285,] 2.345434e+02 0.00035530 -8.669e-17 [3286,] 2.354299e+02 0.00035396 -5.3e-18 [3287,] 2.363198e+02 0.00035263 -6.212e-17 [3288,] 2.372130e+02 0.00035130 -6.332e-17 [3289,] 2.381096e+02 0.00034998 -6.671e-18 [3290,] 2.390096e+02 0.00034866 -4.82e-17 [3291,] 2.399129e+02 0.00034735 4.382e-17 [3292,] 2.408197e+02 0.00034604 -1.851e-17 [3293,] 2.417300e+02 0.00034474 1.131e-16 [3294,] 2.426436e+02 0.00034344 2.42e-17 [3295,] 2.435608e+02 0.00034215 5.737e-18 [3296,] 2.444813e+02 0.00034086 -5.028e-17 [3297,] 2.454054e+02 0.00033957 -7.983e-17 [3298,] 2.463330e+02 0.00033830 3.818e-18 [3299,] 2.472640e+02 0.00033702 -9.877e-18 [3300,] 2.481986e+02 0.00033575 -3.224e-17 [3301,] 2.491367e+02 0.00033449 -6.783e-17 [3302,] 2.500784e+02 0.00033323 -6.814e-17 [3303,] 2.510236e+02 0.00033197 4.484e-17 [3304,] 2.519724e+02 0.00033072 3.122e-17 [3305,] 2.529248e+02 0.00032948 -7.562e-17 [3306,] 2.538807e+02 0.00032824 9.513e-17 [3307,] 2.548403e+02 0.00032700 6.378e-17 [3308,] 2.558036e+02 0.00032577 -1.632e-18 [3309,] 2.567704e+02 0.00032454 -1.955e-17 [3310,] 2.577409e+02 0.00032332 2.177e-17 [3311,] 2.587151e+02 0.00032210 -1.385e-16 [3312,] 2.596930e+02 0.00032089 -1.755e-16 [3313,] 2.606745e+02 0.00031968 2.97e-17 [3314,] 2.616598e+02 0.00031848 -1.029e-16 [3315,] 2.626488e+02 0.00031728 5.912e-17 [3316,] 2.636415e+02 0.00031609 -1.389e-16 [3317,] 2.646380e+02 0.00031490 -8.888e-17 [3318,] 2.656383e+02 0.00031371 5.294e-17 [3319,] 2.666423e+02 0.00031253 2.386e-17 [3320,] 2.676501e+02 0.00031135 -2.752e-18 [3321,] 2.686618e+02 0.00031018 2.439e-17 [3322,] 2.696772e+02 0.00030901 -1.071e-16 [3323,] 2.706965e+02 0.00030785 -6.552e-17 [3324,] 2.717197e+02 0.00030669 -6.817e-17 [3325,] 2.727467e+02 0.00030553 4.124e-17 [3326,] 2.737776e+02 0.00030438 -6.375e-18 [3327,] 2.748124e+02 0.00030324 -6.67e-17 [3328,] 2.758511e+02 0.00030210 -1.088e-16 [3329,] 2.768937e+02 0.00030096 2.735e-17 [3330,] 2.779403e+02 0.00029982 -3.585e-17 [3331,] 2.789908e+02 0.00029870 -1.741e-17 [3332,] 2.800453e+02 0.00029757 -2.116e-17 [3333,] 2.811038e+02 0.00029645 -6.155e-17 [3334,] 2.821663e+02 0.00029533 -6.778e-17 [3335,] 2.832328e+02 0.00029422 -5.701e-17 [3336,] 2.843033e+02 0.00029311 -8.057e-17 [3337,] 2.853779e+02 0.00029201 -1.084e-16 [3338,] 2.864565e+02 0.00029091 -1.651e-17 [3339,] 2.875393e+02 0.00028982 -1.483e-16 [3340,] 2.886261e+02 0.00028872 -1.405e-16 [3341,] 2.897170e+02 0.00028764 -4.299e-17 [3342,] 2.908120e+02 0.00028655 3.878e-18 [3343,] 2.919112e+02 0.00028547 -3.419e-17 [3344,] 2.930145e+02 0.00028440 3.893e-17 [3345,] 2.941220e+02 0.00028333 3.149e-17 [3346,] 2.952337e+02 0.00028226 -1.008e-16 [3347,] 2.963496e+02 0.00028120 -3.58e-17 [3348,] 2.974697e+02 0.00028014 -1.201e-16 [3349,] 2.985941e+02 0.00027909 -1.057e-16 [3350,] 2.997227e+02 0.00027803 -1.381e-16 [3351,] 3.008555e+02 0.00027699 -4.397e-17 [3352,] 3.019927e+02 0.00027594 6.891e-17 [3353,] 3.031341e+02 0.00027491 -1.42e-17 [3354,] 3.042799e+02 0.00027387 -6.778e-17 [3355,] 3.054300e+02 0.00027284 -2.81e-17 [3356,] 3.065844e+02 0.00027181 6.559e-17 [3357,] 3.077432e+02 0.00027079 3.428e-17 [3358,] 3.089064e+02 0.00026977 7.481e-17 [3359,] 3.100739e+02 0.00026875 -2.332e-17 [3360,] 3.112459e+02 0.00026774 -9.819e-17 [3361,] 3.124223e+02 0.00026673 3.822e-17 [3362,] 3.136032e+02 0.00026573 -8.975e-18 [3363,] 3.147885e+02 0.00026473 8.011e-17 [3364,] 3.159783e+02 0.00026373 8.958e-17 [3365,] 3.171726e+02 0.00026274 -1.459e-16 [3366,] 3.183714e+02 0.00026175 -1.192e-16 [3367,] 3.195748e+02 0.00026076 1.217e-16 [3368,] 3.207827e+02 0.00025978 2.076e-17 [3369,] 3.219951e+02 0.00025880 -1.432e-16 [3370,] 3.232122e+02 0.00025783 -1.305e-16 [3371,] 3.244338e+02 0.00025686 -2.73e-17 [3372,] 3.256601e+02 0.00025589 -8.769e-17 [3373,] 3.268910e+02 0.00025493 -1.851e-16 [3374,] 3.281265e+02 0.00025397 -2.769e-17 [3375,] 3.293667e+02 0.00025301 8.995e-17 [3376,] 3.306116e+02 0.00025206 -1.565e-16 [3377,] 3.318613e+02 0.00025111 -1.069e-16 [3378,] 3.331156e+02 0.00025016 1.705e-17 [3379,] 3.343747e+02 0.00024922 -8.198e-17 [3380,] 3.356385e+02 0.00024828 -1.299e-16 [3381,] 3.369071e+02 0.00024735 2.961e-18 [3382,] 3.381805e+02 0.00024642 -5.194e-17 [3383,] 3.394587e+02 0.00024549 -5.068e-17 [3384,] 3.407418e+02 0.00024456 5.315e-17 [3385,] 3.420297e+02 0.00024364 4.804e-17 [3386,] 3.433224e+02 0.00024273 -2.008e-17 [3387,] 3.446201e+02 0.00024181 -1.245e-16 [3388,] 3.459227e+02 0.00024090 -2.451e-17 [3389,] 3.472301e+02 0.00023999 1.722e-17 [3390,] 3.485426e+02 0.00023909 8.788e-18 [3391,] 3.498599e+02 0.00023819 -1.028e-16 [3392,] 3.511823e+02 0.00023729 -2.94e-17 [3393,] 3.525097e+02 0.00023640 -1.533e-16 [3394,] 3.538420e+02 0.00023551 -5.106e-17 [3395,] 3.551795e+02 0.00023462 -5.655e-17 [3396,] 3.565219e+02 0.00023374 -9.143e-17 [3397,] 3.578695e+02 0.00023286 1.725e-17 [3398,] 3.592221e+02 0.00023198 -4.593e-17 [3399,] 3.605799e+02 0.00023111 -1.32e-16 [3400,] 3.619427e+02 0.00023024 -3.841e-17 [3401,] 3.633108e+02 0.00022937 -7.416e-17 [3402,] 3.646840e+02 0.00022851 -4.267e-17 [3403,] 3.660624e+02 0.00022765 -1.136e-16 [3404,] 3.674460e+02 0.00022679 -1.118e-16 [3405,] 3.688348e+02 0.00022594 -1.135e-16 [3406,] 3.702289e+02 0.00022509 -1.425e-16 [3407,] 3.716282e+02 0.00022424 -8.266e-17 [3408,] 3.730329e+02 0.00022339 -5.82e-17 [3409,] 3.744428e+02 0.00022255 -1.911e-17 [3410,] 3.758581e+02 0.00022171 -7.779e-18 [3411,] 3.772787e+02 0.00022088 -6.831e-17 [3412,] 3.787047e+02 0.00022005 -1.299e-17 [3413,] 3.801361e+02 0.00021922 -4.7e-17 [3414,] 3.815729e+02 0.00021839 -4.667e-17 [3415,] 3.830151e+02 0.00021757 -6.768e-17 [3416,] 3.844628e+02 0.00021675 -6.005e-17 [3417,] 3.859160e+02 0.00021594 -6.939e-17 [3418,] 3.873746e+02 0.00021512 -9.136e-17 [3419,] 3.888388e+02 0.00021431 -1.268e-16 [3420,] 3.903085e+02 0.00021351 -7.635e-17 [3421,] 3.917837e+02 0.00021270 -1.386e-17 [3422,] 3.932645e+02 0.00021190 -3.542e-17 [3423,] 3.947510e+02 0.00021110 -2.082e-17 [3424,] 3.962430e+02 0.00021031 -1.715e-16 [3425,] 3.977407e+02 0.00020952 -7.574e-17 [3426,] 3.992440e+02 0.00020873 -4.729e-17 [3427,] 4.007530e+02 0.00020794 -7.125e-17 [3428,] 4.022678e+02 0.00020716 -1.718e-16 [3429,] 4.037882e+02 0.00020638 -2.966e-17 [3430,] 4.053144e+02 0.00020560 1.807e-18 [3431,] 4.068464e+02 0.00020483 -4.651e-17 [3432,] 4.083841e+02 0.00020406 -9.786e-17 [3433,] 4.099277e+02 0.00020329 -3.921e-17 [3434,] 4.114771e+02 0.00020252 -1.835e-17 [3435,] 4.130323e+02 0.00020176 -3.464e-17 [3436,] 4.145935e+02 0.00020100 -1.584e-16 [3437,] 4.161605e+02 0.00020024 -2.013e-17 [3438,] 4.177335e+02 0.00019949 -1.202e-16 [3439,] 4.193124e+02 0.00019874 -1.137e-16 [3440,] 4.208972e+02 0.00019799 -8.883e-17 [3441,] 4.224881e+02 0.00019724 -1.211e-16 [3442,] 4.240850e+02 0.00019650 -7.958e-17 [3443,] 4.256879e+02 0.00019576 4.318e-17 [3444,] 4.272969e+02 0.00019502 -1.249e-18 [3445,] 4.289119e+02 0.00019429 -2.215e-17 [3446,] 4.305331e+02 0.00019356 -4.888e-17 [3447,] 4.321604e+02 0.00019283 -1.264e-17 [3448,] 4.337938e+02 0.00019210 -8.578e-17 [3449,] 4.354334e+02 0.00019138 8.033e-18 [3450,] 4.370792e+02 0.00019066 -9.001e-18 [3451,] 4.387312e+02 0.00018994 -5.158e-17 [3452,] 4.403895e+02 0.00018923 2.209e-17 [3453,] 4.420540e+02 0.00018851 3.997e-17 [3454,] 4.437249e+02 0.00018780 -1.046e-16 [3455,] 4.454020e+02 0.00018710 8.355e-18 [3456,] 4.470855e+02 0.00018639 -4.64e-17 [3457,] 4.487753e+02 0.00018569 -1.736e-16 [3458,] 4.504716e+02 0.00018499 -1.016e-16 [3459,] 4.521742e+02 0.00018429 -3.283e-17 [3460,] 4.538833e+02 0.00018360 -3.179e-17 [3461,] 4.555988e+02 0.00018291 -1.559e-16 [3462,] 4.573209e+02 0.00018222 9.152e-17 [3463,] 4.590494e+02 0.00018153 -1.207e-17 [3464,] 4.607845e+02 0.00018085 -1.869e-17 [3465,] 4.625261e+02 0.00018017 2.37e-17 [3466,] 4.642743e+02 0.00017949 -4.139e-17 [3467,] 4.660291e+02 0.00017882 2.31e-18 [3468,] 4.677905e+02 0.00017814 -1.035e-16 [3469,] 4.695586e+02 0.00017747 1.832e-17 [3470,] 4.713334e+02 0.00017680 -8.14e-17 [3471,] 4.731149e+02 0.00017614 1.14e-17 [3472,] 4.749032e+02 0.00017547 3.651e-17 [3473,] 4.766981e+02 0.00017481 -3.03e-17 [3474,] 4.784999e+02 0.00017416 3.676e-18 [3475,] 4.803085e+02 0.00017350 5.011e-17 [3476,] 4.821239e+02 0.00017285 -2.608e-17 [3477,] 4.839462e+02 0.00017220 -2.925e-17 [3478,] 4.857754e+02 0.00017155 -3.067e-17 [3479,] 4.876115e+02 0.00017090 -1.798e-17 [3480,] 4.894545e+02 0.00017026 -5.018e-17 [3481,] 4.913045e+02 0.00016962 -2.186e-17 [3482,] 4.931614e+02 0.00016898 -1.373e-16 [3483,] 4.950254e+02 0.00016834 1.068e-16 [3484,] 4.968965e+02 0.00016771 -5.166e-17 [3485,] 4.987746e+02 0.00016708 -9.385e-17 [3486,] 5.006598e+02 0.00016645 -4.894e-17 [3487,] 5.025522e+02 0.00016582 -6.169e-17 [3488,] 5.044516e+02 0.00016520 -3.057e-17 [3489,] 5.063583e+02 0.00016457 -2.422e-17 [3490,] 5.082722e+02 0.00016395 -1.318e-16 [3491,] 5.101933e+02 0.00016334 -1.661e-16 [3492,] 5.121217e+02 0.00016272 -3.071e-17 [3493,] 5.140573e+02 0.00016211 -1.709e-16 [3494,] 5.160003e+02 0.00016150 -1.33e-16 [3495,] 5.179506e+02 0.00016089 -9.885e-18 [3496,] 5.199083e+02 0.00016028 -1.401e-16 [3497,] 5.218734e+02 0.00015968 1.097e-16 [3498,] 5.238460e+02 0.00015908 4.178e-17 [3499,] 5.258259e+02 0.00015848 -3.924e-17 [3500,] 5.278134e+02 0.00015788 -2.789e-17 [3501,] 5.298084e+02 0.00015729 -1.463e-16 [3502,] 5.318109e+02 0.00015670 -6.671e-17 [3503,] 5.338210e+02 0.00015611 -7.359e-17 [3504,] 5.358386e+02 0.00015552 -1.901e-16 [3505,] 5.378639e+02 0.00015493 2.615e-17 [3506,] 5.398969e+02 0.00015435 -1.947e-16 [3507,] 5.419376e+02 0.00015377 1.473e-17 [3508,] 5.439859e+02 0.00015319 -1.709e-16 [3509,] 5.460420e+02 0.00015261 -1.526e-18 [3510,] 5.481059e+02 0.00015204 -1.626e-17 [3511,] 5.501776e+02 0.00015147 -1.013e-16 [3512,] 5.522571e+02 0.00015090 -1.069e-16 [3513,] 5.543444e+02 0.00015033 -9.515e-17 [3514,] 5.564397e+02 0.00014976 -9.921e-18 [3515,] 5.585428e+02 0.00014920 7.744e-17 [3516,] 5.606540e+02 0.00014864 2.559e-17 [3517,] 5.627731e+02 0.00014808 -1.435e-16 [3518,] 5.649002e+02 0.00014752 4.311e-17 [3519,] 5.670353e+02 0.00014696 8.289e-18 [3520,] 5.691785e+02 0.00014641 -8.267e-17 [3521,] 5.713299e+02 0.00014586 -3.886e-17 [3522,] 5.734893e+02 0.00014531 -1.477e-16 [3523,] 5.756569e+02 0.00014476 -3.419e-17 [3524,] 5.778327e+02 0.00014422 -1.269e-16 [3525,] 5.800168e+02 0.00014367 -7.902e-17 [3526,] 5.822090e+02 0.00014313 -1.814e-17 [3527,] 5.844096e+02 0.00014259 -9.915e-17 [3528,] 5.866185e+02 0.00014206 -5.841e-17 [3529,] 5.888357e+02 0.00014152 1.839e-17 [3530,] 5.910614e+02 0.00014099 1.167e-17 [3531,] 5.932954e+02 0.00014046 -4.718e-17 [3532,] 5.955379e+02 0.00013993 -4.159e-17 [3533,] 5.977888e+02 0.00013940 -1.446e-16 [3534,] 6.000483e+02 0.00013888 -8.512e-17 [3535,] 6.023163e+02 0.00013835 -1.151e-16 [3536,] 6.045928e+02 0.00013783 -7.423e-17 [3537,] 6.068780e+02 0.00013731 -1.995e-16 [3538,] 6.091718e+02 0.00013680 1.904e-17 [3539,] 6.114743e+02 0.00013628 -5.099e-17 [3540,] 6.137855e+02 0.00013577 -1.366e-16 [3541,] 6.161054e+02 0.00013526 -7.866e-17 [3542,] 6.184341e+02 0.00013475 4.128e-17 [3543,] 6.207716e+02 0.00013424 -7.297e-17 [3544,] 6.231179e+02 0.00013374 -1.442e-16 [3545,] 6.254731e+02 0.00013323 -1.692e-16 [3546,] 6.278372e+02 0.00013273 1.988e-17 [3547,] 6.302102e+02 0.00013223 -1.643e-16 [3548,] 6.325922e+02 0.00013173 -1.273e-16 [3549,] 6.349833e+02 0.00013124 -7.834e-17 [3550,] 6.373833e+02 0.00013074 -3.486e-17 [3551,] 6.397924e+02 0.00013025 -1.706e-16 [3552,] 6.422106e+02 0.00012976 -1.032e-16 [3553,] 6.446380e+02 0.00012927 -1.688e-16 [3554,] 6.470745e+02 0.00012878 -1.549e-17 [3555,] 6.495203e+02 0.00012830 -5.799e-17 [3556,] 6.519752e+02 0.00012782 6.265e-17 [3557,] 6.544395e+02 0.00012734 -2.607e-17 [3558,] 6.569131e+02 0.00012686 -5.191e-17 [3559,] 6.593960e+02 0.00012638 -8.404e-17 [3560,] 6.618883e+02 0.00012590 7.918e-17 [3561,] 6.643901e+02 0.00012543 -5.445e-17 [3562,] 6.669013e+02 0.00012496 -3.426e-17 [3563,] 6.694219e+02 0.00012449 -1.478e-16 [3564,] 6.719522e+02 0.00012402 -9.105e-17 [3565,] 6.744919e+02 0.00012355 -5.322e-17 [3566,] 6.770413e+02 0.00012308 -1.253e-16 [3567,] 6.796003e+02 0.00012262 -3.755e-17 [3568,] 6.821690e+02 0.00012216 8.398e-17 [3569,] 6.847474e+02 0.00012170 -5.241e-17 [3570,] 6.873355e+02 0.00012124 -1.267e-16 [3571,] 6.899334e+02 0.00012078 1.851e-17 [3572,] 6.925412e+02 0.00012033 -7.759e-17 [3573,] 6.951588e+02 0.00011988 -6.565e-17 [3574,] 6.977862e+02 0.00011943 -9.583e-17 [3575,] 7.004237e+02 0.00011898 -2.993e-17 [3576,] 7.030711e+02 0.00011853 -1.056e-16 [3577,] 7.057284e+02 0.00011808 -9.24e-17 [3578,] 7.083959e+02 0.00011764 -1.448e-16 [3579,] 7.110734e+02 0.00011719 -8.121e-17 [3580,] 7.137610e+02 0.00011675 -4.658e-17 [3581,] 7.164588e+02 0.00011631 -4.803e-17 [3582,] 7.191668e+02 0.00011587 -3.678e-17 [3583,] 7.218851e+02 0.00011544 -7.69e-17 [3584,] 7.246136e+02 0.00011500 -1.819e-16 [3585,] 7.273524e+02 0.00011457 -1.09e-16 [3586,] 7.301015e+02 0.00011414 -2.413e-17 [3587,] 7.328611e+02 0.00011371 -4.023e-17 [3588,] 7.356311e+02 0.00011328 -1.035e-16 [3589,] 7.384116e+02 0.00011285 -1.077e-16 [3590,] 7.412025e+02 0.00011243 -2.983e-17 [3591,] 7.440040e+02 0.00011201 -7.118e-17 [3592,] 7.468162e+02 0.00011158 -1.153e-16 [3593,] 7.496389e+02 0.00011116 3.31e-17 [3594,] 7.524723e+02 0.00011075 -9.852e-17 [3595,] 7.553164e+02 0.00011033 5.581e-17 [3596,] 7.581713e+02 0.00010991 -1.919e-16 [3597,] 7.610369e+02 0.00010950 -3.171e-17 [3598,] 7.639134e+02 0.00010909 -1.363e-16 [3599,] 7.668008e+02 0.00010868 -2.955e-17 [3600,] 7.696990e+02 0.00010827 -4.03e-17 [3601,] 7.726083e+02 0.00010786 4.229e-17 [3602,] 7.755285e+02 0.00010745 -7.981e-17 [3603,] 7.784597e+02 0.00010705 1.424e-17 [3604,] 7.814021e+02 0.00010665 -4.192e-17 [3605,] 7.843555e+02 0.00010624 -5.891e-17 [3606,] 7.873202e+02 0.00010584 -1.117e-16 [3607,] 7.902960e+02 0.00010545 2.993e-18 [3608,] 7.932831e+02 0.00010505 -1.474e-16 [3609,] 7.962814e+02 0.00010465 -1.64e-16 [3610,] 7.992911e+02 0.00010426 -5.606e-17 [3611,] 8.023122e+02 0.00010387 -7.208e-17 [3612,] 8.053447e+02 0.00010348 -2.926e-17 [3613,] 8.083887e+02 0.00010309 -3.779e-17 [3614,] 8.114441e+02 0.00010270 -3.982e-17 [3615,] 8.145111e+02 0.00010231 -1.288e-16 [3616,] 8.175897e+02 0.00010193 -3.164e-17 [3617,] 8.206800e+02 0.00010154 -1.456e-16 [3618,] 8.237819e+02 0.00010116 -1.6e-16 [3619,] 8.268955e+02 0.00010078 -5.493e-17 [3620,] 8.300209e+02 0.00010040 -3.076e-18 [3621,] 8.331582e+02 0.00010002 -4.439e-17 [3622,] 8.363073e+02 0.00009964 -1.318e-17 [3623,] 8.394682e+02 0.00009927 -1.098e-16 [3624,] 8.426412e+02 0.00009890 -9.768e-17 [3625,] 8.458261e+02 0.00009852 -2.544e-17 [3626,] 8.490231e+02 0.00009815 -3.536e-17 [3627,] 8.522321e+02 0.00009778 4.507e-17 [3628,] 8.554533e+02 0.00009741 -6.221e-17 [3629,] 8.586866e+02 0.00009705 -3.576e-17 [3630,] 8.619322e+02 0.00009668 -1.24e-16 [3631,] 8.651900e+02 0.00009632 -4.887e-17 [3632,] 8.684602e+02 0.00009596 -1.839e-16 [3633,] 8.717427e+02 0.00009559 -8.401e-18 [3634,] 8.750376e+02 0.00009523 -2.672e-17 [3635,] 8.783450e+02 0.00009488 -1.273e-16 [3636,] 8.816649e+02 0.00009452 -2.09e-17 [3637,] 8.849973e+02 0.00009416 -2.987e-17 [3638,] 8.883423e+02 0.00009381 8.253e-17 [3639,] 8.917000e+02 0.00009345 3.296e-17 [3640,] 8.950703e+02 0.00009310 5.962e-17 [3641,] 8.984534e+02 0.00009275 -1.304e-16 [3642,] 9.018493e+02 0.00009240 -8.164e-17 [3643,] 9.052580e+02 0.00009205 -7.142e-19 [3644,] 9.086796e+02 0.00009171 -1.489e-16 [3645,] 9.121141e+02 0.00009136 -6.742e-17 [3646,] 9.155616e+02 0.00009102 5.682e-17 [3647,] 9.190222e+02 0.00009068 -4.208e-17 [3648,] 9.224958e+02 0.00009033 -3.227e-17 [3649,] 9.259826e+02 0.00008999 -1.664e-16 [3650,] 9.294825e+02 0.00008966 1.409e-17 [3651,] 9.329956e+02 0.00008932 -6.988e-17 [3652,] 9.365221e+02 0.00008898 -1.63e-16 [3653,] 9.400619e+02 0.00008865 -1.467e-17 [3654,] 9.436150e+02 0.00008831 3.952e-18 [3655,] 9.471816e+02 0.00008798 -5.117e-17 [3656,] 9.507616e+02 0.00008765 -6.807e-17 [3657,] 9.543552e+02 0.00008732 -4.922e-17 [3658,] 9.579624e+02 0.00008699 -1.071e-16 [3659,] 9.615832e+02 0.00008666 -1.331e-16 [3660,] 9.652177e+02 0.00008634 -1.499e-16 [3661,] 9.688659e+02 0.00008601 -3.064e-17 [3662,] 9.725279e+02 0.00008569 -4.872e-17 [3663,] 9.762038e+02 0.00008536 -8.39e-17 [3664,] 9.798935e+02 0.00008504 -1.046e-16 [3665,] 9.835972e+02 0.00008472 4.115e-17 [3666,] 9.873149e+02 0.00008440 -9.35e-17 [3667,] 9.910467e+02 0.00008409 -1.389e-16 [3668,] 9.947925e+02 0.00008377 -7.624e-17 [3669,] 9.985525e+02 0.00008345 7.422e-19 [3670,] 1.002327e+03 0.00008314 -1.171e-17 [3671,] 1.006115e+03 0.00008283 -3.642e-17 [3672,] 1.009918e+03 0.00008251 -8.871e-17 [3673,] 1.013735e+03 0.00008220 -1.028e-16 [3674,] 1.017567e+03 0.00008189 -1.283e-16 [3675,] 1.021413e+03 0.00008159 -9.658e-17 [3676,] 1.025274e+03 0.00008128 -1.349e-16 [3677,] 1.029149e+03 0.00008097 -2.221e-17 [3678,] 1.033039e+03 0.00008067 -1.083e-16 [3679,] 1.036943e+03 0.00008036 -1.951e-17 [3680,] 1.040863e+03 0.00008006 4.819e-17 [3681,] 1.044797e+03 0.00007976 -7.804e-17 [3682,] 1.048746e+03 0.00007946 -5.812e-17 [3683,] 1.052710e+03 0.00007916 -2.533e-17 [3684,] 1.056689e+03 0.00007886 5.881e-17 [3685,] 1.060682e+03 0.00007857 -7.869e-17 [3686,] 1.064692e+03 0.00007827 -9.983e-18 [3687,] 1.068716e+03 0.00007798 -1.307e-17 [3688,] 1.072755e+03 0.00007768 4.948e-17 [3689,] 1.076810e+03 0.00007739 -8.251e-17 [3690,] 1.080880e+03 0.00007710 -1.593e-16 [3691,] 1.084965e+03 0.00007681 -1.748e-16 [3692,] 1.089066e+03 0.00007652 -8.641e-19 [3693,] 1.093182e+03 0.00007623 -7.132e-17 [3694,] 1.097314e+03 0.00007594 -6.574e-17 [3695,] 1.101462e+03 0.00007566 -3.645e-18 [3696,] 1.105625e+03 0.00007537 8.862e-17 [3697,] 1.109804e+03 0.00007509 -6.123e-17 [3698,] 1.113999e+03 0.00007481 2.319e-17 [3699,] 1.118209e+03 0.00007452 -8.463e-17 [3700,] 1.122436e+03 0.00007424 -2.001e-17 [3701,] 1.126678e+03 0.00007396 -7.427e-17 [3702,] 1.130937e+03 0.00007369 -1.065e-16 [3703,] 1.135211e+03 0.00007341 -3.109e-17 [3704,] 1.139502e+03 0.00007313 -1.998e-16 [3705,] 1.143809e+03 0.00007286 -1.164e-16 [3706,] 1.148132e+03 0.00007258 9.744e-18 [3707,] 1.152472e+03 0.00007231 -6.285e-17 [3708,] 1.156828e+03 0.00007204 -6.569e-17 [3709,] 1.161200e+03 0.00007176 2.067e-17 [3710,] 1.165589e+03 0.00007149 1.095e-16 [3711,] 1.169995e+03 0.00007123 1.818e-17 [3712,] 1.174417e+03 0.00007096 -2.973e-17 [3713,] 1.178856e+03 0.00007069 -8.103e-17 [3714,] 1.183312e+03 0.00007042 -7.133e-17 [3715,] 1.187784e+03 0.00007016 9.324e-17 [3716,] 1.192274e+03 0.00006989 -8.996e-17 [3717,] 1.196780e+03 0.00006963 9.583e-18 [3718,] 1.201304e+03 0.00006937 -1.118e-16 [3719,] 1.205844e+03 0.00006911 -5.527e-18 [3720,] 1.210402e+03 0.00006885 -6.06e-17 [3721,] 1.214977e+03 0.00006859 -1.903e-16 [3722,] 1.219569e+03 0.00006833 -1.316e-16 [3723,] 1.224179e+03 0.00006807 -4.064e-17 [3724,] 1.228806e+03 0.00006782 -9.211e-17 [3725,] 1.233450e+03 0.00006756 -1.315e-16 [3726,] 1.238112e+03 0.00006731 -7.223e-17 [3727,] 1.242792e+03 0.00006705 3.693e-17 [3728,] 1.247489e+03 0.00006680 -6.322e-18 [3729,] 1.252204e+03 0.00006655 -5.766e-18 [3730,] 1.256937e+03 0.00006630 3.775e-17 [3731,] 1.261688e+03 0.00006605 1.087e-16 [3732,] 1.266457e+03 0.00006580 4.861e-17 [3733,] 1.271244e+03 0.00006555 -1.372e-16 [3734,] 1.276049e+03 0.00006531 -1.187e-16 [3735,] 1.280872e+03 0.00006506 -2.108e-17 [3736,] 1.285713e+03 0.00006481 -7.831e-17 [3737,] 1.290573e+03 0.00006457 3.653e-18 [3738,] 1.295451e+03 0.00006433 5.392e-18 [3739,] 1.300347e+03 0.00006409 -2.288e-16 [3740,] 1.305262e+03 0.00006384 4.631e-17 [3741,] 1.310195e+03 0.00006360 -3.194e-17 [3742,] 1.315148e+03 0.00006336 1.928e-18 [3743,] 1.320118e+03 0.00006313 2.692e-17 [3744,] 1.325108e+03 0.00006289 -7.974e-17 [3745,] 1.330117e+03 0.00006265 4.273e-17 [3746,] 1.335144e+03 0.00006242 9.701e-18 [3747,] 1.340190e+03 0.00006218 -5.181e-17 [3748,] 1.345256e+03 0.00006195 -1.345e-16 [3749,] 1.350341e+03 0.00006171 -5.686e-17 [3750,] 1.355445e+03 0.00006148 1.28e-16 [3751,] 1.360568e+03 0.00006125 5.62e-17 [3752,] 1.365710e+03 0.00006102 -1.227e-17 [3753,] 1.370872e+03 0.00006079 -4.489e-17 [3754,] 1.376054e+03 0.00006056 -1.069e-16 [3755,] 1.381255e+03 0.00006033 -5.961e-17 [3756,] 1.386475e+03 0.00006010 -6.772e-18 [3757,] 1.391716e+03 0.00005988 -8.757e-17 [3758,] 1.396976e+03 0.00005965 -8.111e-17 [3759,] 1.402256e+03 0.00005943 -3.615e-17 [3760,] 1.407556e+03 0.00005920 -6.775e-17 [3761,] 1.412877e+03 0.00005898 -5.229e-17 [3762,] 1.418217e+03 0.00005876 -6.296e-17 [3763,] 1.423577e+03 0.00005854 -1.392e-16 [3764,] 1.428958e+03 0.00005832 -7.402e-17 [3765,] 1.434359e+03 0.00005810 -3.792e-17 [3766,] 1.439780e+03 0.00005788 -5.223e-17 [3767,] 1.445222e+03 0.00005766 -1.004e-16 [3768,] 1.450685e+03 0.00005744 -1.547e-16 [3769,] 1.456168e+03 0.00005723 -5.411e-17 [3770,] 1.461672e+03 0.00005701 -4.989e-17 [3771,] 1.467196e+03 0.00005680 -1.374e-16 [3772,] 1.472742e+03 0.00005658 1.805e-17 [3773,] 1.478308e+03 0.00005637 5.789e-17 [3774,] 1.483896e+03 0.00005616 -1.609e-16 [3775,] 1.489505e+03 0.00005595 -1.037e-16 [3776,] 1.495135e+03 0.00005574 -4.44e-17 [3777,] 1.500786e+03 0.00005553 -1.087e-16 [3778,] 1.506458e+03 0.00005532 -1.006e-16 [3779,] 1.512152e+03 0.00005511 5.25e-17 [3780,] 1.517868e+03 0.00005490 -1.426e-16 [3781,] 1.523605e+03 0.00005469 -1.033e-16 [3782,] 1.529363e+03 0.00005449 -5.479e-17 [3783,] 1.535144e+03 0.00005428 -1.953e-16 [3784,] 1.540946e+03 0.00005408 5.668e-17 [3785,] 1.546771e+03 0.00005388 1.57e-17 [3786,] 1.552617e+03 0.00005367 -4.915e-17 [3787,] 1.558485e+03 0.00005347 -3.96e-17 [3788,] 1.564376e+03 0.00005327 1.038e-17 [3789,] 1.570289e+03 0.00005307 -1.458e-16 [3790,] 1.576224e+03 0.00005287 -5.595e-17 [3791,] 1.582182e+03 0.00005267 -5.961e-17 [3792,] 1.588162e+03 0.00005247 -3.442e-17 [3793,] 1.594165e+03 0.00005227 -4.612e-18 [3794,] 1.600190e+03 0.00005208 -1.294e-16 [3795,] 1.606238e+03 0.00005188 -1.226e-18 [3796,] 1.612309e+03 0.00005169 -1.782e-16 [3797,] 1.618403e+03 0.00005149 -8.842e-17 [3798,] 1.624521e+03 0.00005130 -3.705e-17 [3799,] 1.630661e+03 0.00005110 1.596e-17 [3800,] 1.636824e+03 0.00005091 -1.264e-16 [3801,] 1.643011e+03 0.00005072 -6.847e-18 [3802,] 1.649221e+03 0.00005053 -1.033e-16 [3803,] 1.655454e+03 0.00005034 -1.439e-16 [3804,] 1.661712e+03 0.00005015 -1.646e-16 [3805,] 1.667992e+03 0.00004996 3.464e-17 [3806,] 1.674297e+03 0.00004977 -2.304e-17 [3807,] 1.680625e+03 0.00004958 -7.741e-17 [3808,] 1.686977e+03 0.00004940 -7.616e-17 [3809,] 1.693354e+03 0.00004921 -5.708e-17 [3810,] 1.699754e+03 0.00004903 -8.392e-18 [3811,] 1.706179e+03 0.00004884 -8.698e-17 [3812,] 1.712627e+03 0.00004866 -1.48e-16 [3813,] 1.719101e+03 0.00004847 -1.259e-16 [3814,] 1.725598e+03 0.00004829 2.155e-17 [3815,] 1.732120e+03 0.00004811 -1.966e-16 [3816,] 1.738667e+03 0.00004793 -4.277e-17 [3817,] 1.745239e+03 0.00004775 -2.423e-17 [3818,] 1.751835e+03 0.00004757 -9.572e-17 [3819,] 1.758457e+03 0.00004739 -2.509e-17 [3820,] 1.765103e+03 0.00004721 -4.249e-17 [3821,] 1.771775e+03 0.00004703 -1.306e-16 [3822,] 1.778472e+03 0.00004686 1.476e-17 [3823,] 1.785194e+03 0.00004668 -8.15e-17 [3824,] 1.791941e+03 0.00004650 -6.134e-17 [3825,] 1.798714e+03 0.00004633 -7.264e-17 [3826,] 1.805513e+03 0.00004615 -1.66e-16 [3827,] 1.812337e+03 0.00004598 5.507e-17 [3828,] 1.819187e+03 0.00004581 6.645e-17 [3829,] 1.826063e+03 0.00004564 -6.336e-17 [3830,] 1.832965e+03 0.00004546 -6.526e-18 [3831,] 1.839893e+03 0.00004529 -1.448e-17 [3832,] 1.846847e+03 0.00004512 -5.838e-17 [3833,] 1.853828e+03 0.00004495 -1.658e-16 [3834,] 1.860835e+03 0.00004478 3.953e-17 [3835,] 1.867868e+03 0.00004461 -4.179e-17 [3836,] 1.874928e+03 0.00004445 -7.784e-17 [3837,] 1.882015e+03 0.00004428 -1.665e-16 [3838,] 1.889128e+03 0.00004411 -1.432e-16 [3839,] 1.896268e+03 0.00004395 -7.699e-17 [3840,] 1.903436e+03 0.00004378 -1.16e-16 [3841,] 1.910630e+03 0.00004362 -4.908e-17 [3842,] 1.917852e+03 0.00004345 -1.317e-16 [3843,] 1.925101e+03 0.00004329 -1.224e-18 [3844,] 1.932377e+03 0.00004312 -1.275e-16 [3845,] 1.939681e+03 0.00004296 -1.655e-16 [3846,] 1.947012e+03 0.00004280 -3.166e-17 [3847,] 1.954371e+03 0.00004264 -1.508e-16 [3848,] 1.961758e+03 0.00004248 -6.698e-17 [3849,] 1.969173e+03 0.00004232 -8.921e-17 [3850,] 1.976616e+03 0.00004216 -1.003e-17 [3851,] 1.984087e+03 0.00004200 -2.066e-18 [3852,] 1.991586e+03 0.00004184 1.466e-17 [3853,] 1.999114e+03 0.00004169 -7.229e-18 [3854,] 2.006670e+03 0.00004153 -1.506e-16 [3855,] 2.014254e+03 0.00004137 1.892e-17 [3856,] 2.021868e+03 0.00004122 -1.225e-17 [3857,] 2.029510e+03 0.00004106 -1.623e-16 [3858,] 2.037181e+03 0.00004091 -1.359e-17 [3859,] 2.044880e+03 0.00004075 -1.139e-16 [3860,] 2.052610e+03 0.00004060 -1.677e-16 [3861,] 2.060368e+03 0.00004045 -2.856e-17 [3862,] 2.068155e+03 0.00004029 -1.258e-16 [3863,] 2.075972e+03 0.00004014 -5.412e-17 [3864,] 2.083819e+03 0.00003999 3.602e-17 [3865,] 2.091695e+03 0.00003984 4.158e-17 [3866,] 2.099601e+03 0.00003969 -1.855e-16 [3867,] 2.107537e+03 0.00003954 -2.019e-17 [3868,] 2.115503e+03 0.00003939 -9.64e-17 [3869,] 2.123499e+03 0.00003924 -4.828e-17 [3870,] 2.131525e+03 0.00003910 -1.153e-16 [3871,] 2.139581e+03 0.00003895 -1.877e-16 [3872,] 2.147668e+03 0.00003880 -3.797e-17 [3873,] 2.155786e+03 0.00003866 5.904e-17 [3874,] 2.163934e+03 0.00003851 -3.025e-17 [3875,] 2.172113e+03 0.00003837 -6.818e-17 [3876,] 2.180323e+03 0.00003822 -7.739e-17 [3877,] 2.188564e+03 0.00003808 -8.337e-17 [3878,] 2.196836e+03 0.00003793 -2.083e-16 [3879,] 2.205139e+03 0.00003779 -5.766e-17 [3880,] 2.213474e+03 0.00003765 -1.581e-16 [3881,] 2.221840e+03 0.00003751 -1.519e-16 [3882,] 2.230238e+03 0.00003737 -6.108e-17 [3883,] 2.238668e+03 0.00003722 -1.372e-17 [3884,] 2.247129e+03 0.00003708 -4.304e-17 [3885,] 2.255623e+03 0.00003694 -1.585e-16 [3886,] 2.264148e+03 0.00003681 -8.411e-18 [3887,] 2.272706e+03 0.00003667 -9.629e-17 [3888,] 2.281296e+03 0.00003653 -4.34e-17 [3889,] 2.289919e+03 0.00003639 -1.581e-17 [3890,] 2.298574e+03 0.00003625 -8.862e-17 [3891,] 2.307262e+03 0.00003612 -1.123e-17 [3892,] 2.315983e+03 0.00003598 -9.665e-17 [3893,] 2.324736e+03 0.00003585 5.788e-18 [3894,] 2.333523e+03 0.00003571 -1.359e-16 [3895,] 2.342343e+03 0.00003558 -9.103e-17 [3896,] 2.351197e+03 0.00003544 -1.608e-18 [3897,] 2.360083e+03 0.00003531 -3.048e-17 [3898,] 2.369004e+03 0.00003518 -2.469e-18 [3899,] 2.377958e+03 0.00003504 4.293e-17 [3900,] 2.386946e+03 0.00003491 -3.656e-17 [3901,] 2.395968e+03 0.00003478 -2.614e-17 [3902,] 2.405024e+03 0.00003465 3.539e-17 [3903,] 2.414114e+03 0.00003452 -1.593e-16 [3904,] 2.423239e+03 0.00003439 2.538e-17 [3905,] 2.432398e+03 0.00003426 -3.882e-17 [3906,] 2.441591e+03 0.00003413 -6.605e-17 [3907,] 2.450820e+03 0.00003400 3.208e-18 [3908,] 2.460083e+03 0.00003387 -2.111e-16 [3909,] 2.469382e+03 0.00003375 -4.001e-17 [3910,] 2.478715e+03 0.00003362 -1.838e-18 [3911,] 2.488084e+03 0.00003349 6.961e-18 [3912,] 2.497488e+03 0.00003337 -1.104e-16 [3913,] 2.506928e+03 0.00003324 2.253e-17 [3914,] 2.516403e+03 0.00003312 -7.563e-17 [3915,] 2.525914e+03 0.00003299 -1.963e-18 [3916,] 2.535462e+03 0.00003287 1.729e-17 [3917,] 2.545045e+03 0.00003274 -5.984e-17 [3918,] 2.554664e+03 0.00003262 -1.02e-16 [3919,] 2.564320e+03 0.00003250 8.589e-17 [3920,] 2.574013e+03 0.00003237 -4.521e-17 [3921,] 2.583742e+03 0.00003225 -1.254e-16 [3922,] 2.593507e+03 0.00003213 -1.993e-17 [3923,] 2.603310e+03 0.00003201 -1.859e-17 [3924,] 2.613150e+03 0.00003189 -6.338e-17 [3925,] 2.623027e+03 0.00003177 -3.025e-17 [3926,] 2.632941e+03 0.00003165 2.458e-17 [3927,] 2.642892e+03 0.00003153 1.116e-16 [3928,] 2.652882e+03 0.00003141 -1.083e-17 [3929,] 2.662909e+03 0.00003129 -4.546e-17 [3930,] 2.672974e+03 0.00003118 4.106e-17 [3931,] 2.683077e+03 0.00003106 -1.305e-16 [3932,] 2.693218e+03 0.00003094 -1.709e-16 [3933,] 2.703398e+03 0.00003083 -2.226e-16 [3934,] 2.713616e+03 0.00003071 1.913e-17 [3935,] 2.723872e+03 0.00003059 -8.502e-17 [3936,] 2.734168e+03 0.00003048 -4.9e-17 [3937,] 2.744502e+03 0.00003036 -4.135e-17 [3938,] 2.754875e+03 0.00003025 -1.701e-16 [3939,] 2.765288e+03 0.00003014 1.576e-17 [3940,] 2.775740e+03 0.00003002 -1.103e-16 [3941,] 2.786231e+03 0.00002991 -1.002e-16 [3942,] 2.796762e+03 0.00002980 -4.343e-17 [3943,] 2.807333e+03 0.00002968 -1.025e-16 [3944,] 2.817944e+03 0.00002957 4.219e-18 [3945,] 2.828595e+03 0.00002946 2.981e-17 [3946,] 2.839286e+03 0.00002935 -7.496e-17 [3947,] 2.850018e+03 0.00002924 -1.202e-16 [3948,] 2.860790e+03 0.00002913 -9.194e-17 [3949,] 2.871603e+03 0.00002902 -3.186e-17 [3950,] 2.882457e+03 0.00002891 -1.235e-16 [3951,] 2.893352e+03 0.00002880 -2.866e-17 [3952,] 2.904288e+03 0.00002869 -2.027e-17 [3953,] 2.915265e+03 0.00002859 -1.252e-16 [3954,] 2.926284e+03 0.00002848 -6.191e-17 [3955,] 2.937344e+03 0.00002837 -8.739e-18 [3956,] 2.948447e+03 0.00002826 -5.252e-17 [3957,] 2.959591e+03 0.00002816 -1.803e-16 [3958,] 2.970777e+03 0.00002805 -6.675e-17 [3959,] 2.982006e+03 0.00002795 -1.465e-16 [3960,] 2.993277e+03 0.00002784 -1.537e-16 [3961,] 3.004590e+03 0.00002774 -1.082e-16 [3962,] 3.015947e+03 0.00002763 -1.089e-16 [3963,] 3.027346e+03 0.00002753 -1.22e-17 [3964,] 3.038789e+03 0.00002742 -1.714e-16 [3965,] 3.050274e+03 0.00002732 -2.695e-17 [3966,] 3.061803e+03 0.00002722 -3.94e-17 [3967,] 3.073376e+03 0.00002711 -8.237e-17 [3968,] 3.084993e+03 0.00002701 -3.034e-17 [3969,] 3.096653e+03 0.00002691 -5.874e-17 [3970,] 3.108357e+03 0.00002681 4.489e-17 [3971,] 3.120106e+03 0.00002671 2.906e-17 [3972,] 3.131899e+03 0.00002661 -3.297e-17 [3973,] 3.143737e+03 0.00002651 -1.375e-17 [3974,] 3.155619e+03 0.00002641 3.7e-18 [3975,] 3.167546e+03 0.00002631 -1.17e-16 [3976,] 3.179519e+03 0.00002621 -8.258e-17 [3977,] 3.191536e+03 0.00002611 -9.097e-17 [3978,] 3.203599e+03 0.00002601 -1.062e-16 [3979,] 3.215708e+03 0.00002591 -1.205e-16 [3980,] 3.227862e+03 0.00002582 -6.906e-17 [3981,] 3.240062e+03 0.00002572 -1.735e-16 [3982,] 3.252309e+03 0.00002562 -3.353e-17 [3983,] 3.264602e+03 0.00002553 4.112e-17 [3984,] 3.276941e+03 0.00002543 -3.137e-17 [3985,] 3.289327e+03 0.00002533 -8.655e-17 [3986,] 3.301759e+03 0.00002524 -1.175e-16 [3987,] 3.314239e+03 0.00002514 -2.415e-16 [3988,] 3.326766e+03 0.00002505 -1.664e-16 [3989,] 3.339340e+03 0.00002496 -4.848e-17 [3990,] 3.351962e+03 0.00002486 -1.629e-16 [3991,] 3.364631e+03 0.00002477 -1.066e-16 [3992,] 3.377348e+03 0.00002467 -2.527e-16 [3993,] 3.390114e+03 0.00002458 -5.583e-17 [3994,] 3.402927e+03 0.00002449 -1.72e-16 [3995,] 3.415789e+03 0.00002440 -6.724e-17 [3996,] 3.428700e+03 0.00002430 -1.401e-16 [3997,] 3.441659e+03 0.00002421 -9.898e-17 [3998,] 3.454668e+03 0.00002412 -1.595e-16 [3999,] 3.467725e+03 0.00002403 -1.374e-16 [4000,] 3.480832e+03 0.00002394 -3.276e-17 [4001,] 3.493989e+03 0.00002385 -6.231e-17 [4002,] 3.507195e+03 0.00002376 -1.285e-16 [4003,] 3.520451e+03 0.00002367 -6.731e-17 [4004,] 3.533757e+03 0.00002358 -2.32e-17 [4005,] 3.547114e+03 0.00002349 -1.568e-16 [4006,] 3.560521e+03 0.00002340 -2.222e-16 [4007,] 3.573978e+03 0.00002332 -1.65e-16 [4008,] 3.587487e+03 0.00002323 -2.566e-17 [4009,] 3.601047e+03 0.00002314 -6.435e-17 [4010,] 3.614657e+03 0.00002305 -1.187e-16 [4011,] 3.628320e+03 0.00002297 -1.807e-16 [4012,] 3.642034e+03 0.00002288 -2.159e-16 [4013,] 3.655799e+03 0.00002279 -6.109e-17 [4014,] 3.669617e+03 0.00002271 -1.484e-16 [4015,] 3.683487e+03 0.00002262 -3.794e-17 [4016,] 3.697410e+03 0.00002254 -3.247e-17 [4017,] 3.711385e+03 0.00002245 -2.219e-16 [4018,] 3.725413e+03 0.00002237 -8.905e-17 [4019,] 3.739494e+03 0.00002228 -1.673e-17 [4020,] 3.753628e+03 0.00002220 -1.991e-16 [4021,] 3.767815e+03 0.00002212 -2.642e-17 [4022,] 3.782056e+03 0.00002203 -5.082e-17 [4023,] 3.796351e+03 0.00002195 -7.433e-17 [4024,] 3.810701e+03 0.00002187 -6.705e-17 [4025,] 3.825104e+03 0.00002179 -3.841e-18 [4026,] 3.839562e+03 0.00002170 -7.373e-17 [4027,] 3.854074e+03 0.00002162 -1.13e-16 [4028,] 3.868641e+03 0.00002154 -1.671e-16 [4029,] 3.883263e+03 0.00002146 -4.394e-17 [4030,] 3.897941e+03 0.00002138 -1.024e-16 [4031,] 3.912674e+03 0.00002130 -1.103e-16 [4032,] 3.927463e+03 0.00002122 -1.02e-16 [4033,] 3.942307e+03 0.00002114 3.6e-17 [4034,] 3.957208e+03 0.00002106 -1.234e-16 [4035,] 3.972165e+03 0.00002098 -1.88e-17 [4036,] 3.987179e+03 0.00002090 5.146e-17 [4037,] 4.002249e+03 0.00002082 -3.797e-18 [4038,] 4.017376e+03 0.00002074 -2.494e-16 [4039,] 4.032561e+03 0.00002067 -1.753e-16 [4040,] 4.047802e+03 0.00002059 -2.058e-16 [4041,] 4.063102e+03 0.00002051 -8.551e-17 [4042,] 4.078459e+03 0.00002043 -1.01e-16 [4043,] 4.093874e+03 0.00002036 -8.708e-17 [4044,] 4.109348e+03 0.00002028 -4.11e-17 [4045,] 4.124880e+03 0.00002020 -2.088e-16 [4046,] 4.140471e+03 0.00002013 -1.721e-16 [4047,] 4.156121e+03 0.00002005 -2.429e-16 [4048,] 4.171829e+03 0.00001998 -1.634e-16 [4049,] 4.187598e+03 0.00001990 -9.396e-17 [4050,] 4.203426e+03 0.00001983 -1.056e-16 [4051,] 4.219313e+03 0.00001975 1.626e-18 [4052,] 4.235261e+03 0.00001968 -6.848e-17 [4053,] 4.251269e+03 0.00001960 -1.644e-16 [4054,] 4.267337e+03 0.00001953 -3.362e-17 [4055,] 4.283467e+03 0.00001945 -1.294e-16 [4056,] 4.299657e+03 0.00001938 1.393e-17 [4057,] 4.315908e+03 0.00001931 -1.734e-17 [4058,] 4.332221e+03 0.00001924 -1.47e-16 [4059,] 4.348595e+03 0.00001916 -1.942e-16 [4060,] 4.365032e+03 0.00001909 -8.93e-17 [4061,] 4.381530e+03 0.00001902 -9.382e-17 [4062,] 4.398091e+03 0.00001895 -1.668e-16 [4063,] 4.414715e+03 0.00001888 -4.669e-17 [4064,] 4.431401e+03 0.00001881 -2.186e-16 [4065,] 4.448150e+03 0.00001873 -5.586e-17 [4066,] 4.464963e+03 0.00001866 -2.021e-16 [4067,] 4.481839e+03 0.00001859 -3.78e-17 [4068,] 4.498779e+03 0.00001852 -4.886e-17 [4069,] 4.515783e+03 0.00001845 -1.409e-16 [4070,] 4.532851e+03 0.00001838 -3.731e-17 [4071,] 4.549984e+03 0.00001832 -2.195e-16 [4072,] 4.567182e+03 0.00001825 -1.645e-17 [4073,] 4.584444e+03 0.00001818 -1.875e-17 [4074,] 4.601772e+03 0.00001811 7.383e-17 [4075,] 4.619165e+03 0.00001804 -1.858e-16 [4076,] 4.636624e+03 0.00001797 -6.538e-17 [4077,] 4.654149e+03 0.00001791 -4.84e-17 [4078,] 4.671740e+03 0.00001784 -9.022e-17 [4079,] 4.689398e+03 0.00001777 -4.602e-17 [4080,] 4.707123e+03 0.00001770 -9.452e-17 [4081,] 4.724914e+03 0.00001764 -1.064e-17 [4082,] 4.742773e+03 0.00001757 -7.592e-17 [4083,] 4.760699e+03 0.00001750 -5.355e-17 [4084,] 4.778693e+03 0.00001744 -1.003e-16 [4085,] 4.796755e+03 0.00001737 -7.795e-17 [4086,] 4.814885e+03 0.00001731 -2.51e-17 [4087,] 4.833084e+03 0.00001724 7.088e-17 [4088,] 4.851352e+03 0.00001718 -1.708e-16 [4089,] 4.869688e+03 0.00001711 -8.182e-17 [4090,] 4.888094e+03 0.00001705 4.589e-18 [4091,] 4.906570e+03 0.00001698 -3.178e-17 [4092,] 4.925115e+03 0.00001692 -1.18e-16 [4093,] 4.943731e+03 0.00001686 -1.146e-16 [4094,] 4.962416e+03 0.00001679 4.272e-17 [4095,] 4.981173e+03 0.00001673 -8.038e-17 [4096,] 5.000000e+03 0.00001667 1.57e-17 > > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", cutoffs = cuts) > ## and zoom in: > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", cutoffs = cuts, ylim = yl2) > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", cutoffs = cuts, ylim = yl2/20) > > if(do.pdf) { dev.off(); pdf("stirlerr-relErr_6-fin-2.pdf") } > > ## zoom in ==> {good for n >= 10} > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", ylim = 2e-15*c(-1,1), + cutoffs = cuts)## old default cutoffs = c(15,35, 80, 500) > > if(do.pdf) { dev.off(); pdf("stirlerr-relErr_6-fin-3.pdf") } > showProc.time() Time (user system elapsed): 3.33 0.02 3.532 > > > ##-- April 20: have more terms up to S10 in stirlerr() --> can use more cutoffs > n <- n5m <- lseq(1/64, 5000, length=4096) > nM <- mpfr(n, if(doExtras) 2048L # a *lot* accuracy for stirlerr(nM,*) + else 512L) > ct10.1 <- c( 5.4, 7.5, 8.5, 10.625, 12.125, 20, 26, 60, 200, 3300)# till 2024-01-19 > ct10.2 <- c( 5.4, 7.9, 8.75,10.5 , 13, 20, 26, 60, 200, 3300) > cuts <- + ct12.1 <- c(5.22, 6.5, 7.0, 7.9, 8.75,10.5 , 13, 20, 26, 60, 200, 3300) > ## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > ## 5.25 is "too small" but the direct formula is already really bad there, ... > st.nM <- roundMpfr(stirlerr(nM, use.halves=FALSE, ## << on purpose; + verbose=TRUE), precBits = 128) stirlerr(n): As 'n' is "mpfr", using "mpfr" & stirlerrM(): > ## NB: for x=xM <mpfr>; `cutoffs` are *not* used. > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", scheme = "R4.4_0") > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", scheme = "R4.4_0", ylim = c(-1,1)*3e-15) > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", scheme = "R4.4_0", ylim = c(-1,1)*1e-15) > > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", scheme = "R4.4_0", abs=TRUE) > axis(1,at= 2:6, col=NA, col.axis=(cola <- "lightblue"), line=-3/4) > abline(v = 2:6, lty=3, col=cola) > if(FALSE)## using exact values sferr_halves[] *instead* of MPFR ones: ==> confirmation they lay on top + lines((0:30)/2, abs(stirlerr((0:30)/2, cutoffs=cuts, verbose=TRUE)/DPQ:::sferr_halves - 1), type="o", col=2,lwd=2) > > if(FALSE) ## nice (but unneeded) printout : + print(cbind(n = format(n, drop0trailing = TRUE), + stirlerr= format(st.,scientific=FALSE, digits=4), + relErr = signif(relE, 4)) + , quote=FALSE) > > showProc.time() Time (user system elapsed): 2.787 0.016 2.991 > > <0c> > ## ========== where should the cutoffs be ? =================================================== > > .stirl.cutoffs <- function(scheme) + eval(do.call(substitute, list(formals(stirlerr)$cutoffs, list(scheme = scheme)))) > drawCuts <- function(scheme, axis=NA, lty = 3, col = "skyblue", ...) { + abline(v = (ct <- .stirl.cutoffs(scheme)), lty=lty, col=col, ...) + if(is.finite(axis)) axisCuts(side = axis, at = ct, col=col, ...) + } > axisCuts <- function(scheme, side = 3, at = .stirl.cutoffs(scheme), col = "skyblue", line = -3/4, ...) + axis(side, at=at, labels=formatC(at), col.axis = col, col=NA, col.ticks=NA, line=line, ...) > mtextCuts <- function(cutoffs, scheme, ...) { + if(!missing(scheme)) cutoffs <- .stirl.cutoffs(scheme) + mtext(paste("cutoffs =", deparse1(cutoffs)), ...) + } > > > if(do.pdf) { dev.off(); pdf("stirlerr-tst_order_k.pdf") } > > mK <- 20L # := max(k) > ## order = k = 1:mK terms in series approx: > k <- 1:mK > n <- 2^seq(1, 28, by=1/16) > nM <- mpfr(n, 1024) > stnM <- stirlerr(nM) # the "true" values > > stirlOrd <- sapply(k, function(k.) stirlerr(n, order = k.)) > stirlO_lgcor <- cbind(stirlOrd, sapply(5:6, function(nal) lgammacor(n, nalgm = nal))) > relE <- asNumeric(stirlO_lgcor/stnM -1) # "true" relative error > > ## use a "smooth" but well visible polette : > palROBG <- colorRampPalette(c("red", "darkorange2", "blue", "seagreen"), space = "Lab") > palette(adjustcolor(palROBG(mK+2), 3/4)) > ## -- 2 lgamcor()'s > > (tit.k <- substitute(list( stirlerr(n, order=k) ~~"error", k == 1:mK), list(mK = mK))) list(stirlerr(n, order = k) ~ ~"error", k == 1:20L) > (tit.kA <- substitute(list(abs(stirlerr(n, order=k) ~~"error"), k == 1:mK), list(mK = mK))) list(abs(stirlerr(n, order = k) ~ ~"error"), k == 1:20L) > lgammacorTit <- function(...) mtext("+ lgammacor(x, 5) [bad] + lgammacor(x, 6) [good]", col=1, ...) > > matplotB(n, relE, cex=2/3, ylim = c(-1,1)*1e-13, col=k, + log = "x", xaxt="n", main = tit.k) > lgammacorTit() > eaxis(1, nintLog = 20) > drawCuts("R4.4_0") > > ## zoom in (ylim) > matplotB(n, relE, cex=2/3, ylim = c(-1,1)*5e-15, col=k, + log = "x", xaxt="n", main = tit.k) > lgammacorTit() > eaxis(1, nintLog = 20); abline(h = (-2:2)*2^-53, lty=3, lwd=1/2) > drawCuts("R4.4_0", axis = 3) > > ## log-log |rel.Err| -- "linear" > matplotB(n, abs19(relE), cex=2/3, col=k, ylim = c(8e-17, 1e-7), log = "xy", main=tit.kA) > mtext(paste("k =", deparse(k))) ; abline(h = 2^-(53:51), lty=3, lwd=1/2) > lgammacorTit(line=-1) > drawCuts("R4.4_0", axis = 3) > > ## zoom in -- still "large" {no longer carry the lgammacor() .. }: > n2c <- 2^seq(2, 8, by=1/256) > nMc <- mpfr(n2c, 1024) > stnMc <- stirlerr(nMc) # the "true" values > stirlOrc <- sapply(k, function(k.) stirlerr(n2c, order = k.)) > relEc <- asNumeric(stirlOrc/stnMc -1) # "true" relative error > > matplotB(n2c, relEc, cex=2/3, ylim = c(-1,1)*1e-13, col=k, + log = "x", xaxt="n", main = tit.k) > eaxis(1, sub10 = 2) > drawCuts("R4.4_0", axis=3) > > ## log-log |rel.Err| -- "linear" > matplotB(n2c, abs19(relEc), cex=2/3, col=k, ylim = c(8e-17, 1e-3), log = "xy", main=tit.kA) > mtext(paste("k =", deparse(k))) ; abline(h = 2^-(53:51), lty=3, lwd=1/2) > drawCuts("R4.4_0", axis = 3) > > > ## zoom into the critical n region > nc <- seq(3.5, 11, by=1/128) > ncM <- mpfr(nc, 256) > stncM <- stirlerr(ncM) # the "true" values > stirlO.c <- sapply(k, function(k) stirlerr(nc, order = k)) > relEc <- asNumeric(stirlO.c/stncM -1) # "true" relative error > > > ## log-log |rel.Err| -- "linear" > matplotB(nc, abs19(relEc), cex=2/3, col=k, ylim = c(2e-17, 1e-8), + log = "xy", xlab = quote(n), main = quote(abs(relErr(stirlerr(n, order==k))))) > mtext(paste("k =", deparse(k))) ; drawEps.h(lwd = 1/2) > lines(nc, abs19(asNumeric(stirlerr_simpl(nc, "R3" )/stncM - 1)), lwd=1.5, col=adjustcolor("thistle", .6)) > lines(nc, abs19(asNumeric(stirlerr_simpl(nc, "MM2")/stncM - 1)), lwd=4, col=adjustcolor(20, .4)) > ## lines(nc, abs19(asNumeric(stirlerr_simpl(nc,"MM2")/stncM - 1)), lwd=3, col=adjustcolor("purple", 2/3)) > legend(10^par("usr")[1], 1e-9, legend=paste0("k=", k), bty="n", lwd=2, + col=k, lty=1:5, pch= c(1L:9L, 0L, letters)[seq_along(k)]) > drawCuts("R4.4_0", axis=3) > > ## Zoom-in [only] > matplotB(nc, abs19(relEc), cex=2/3, col=k, ylim = c(4e-17, 1e-11), xlim = c(4.8, 6.5), + log = "xy", xlab = quote(n), main = quote(abs(relErr(stirlerr(n, order==k))))) > mtext(paste("k =", deparse(k))) ; drawEps.h(lwd = 1/2) > lines(nc, abs19(asNumeric(stirlerr_simpl(nc, "R3" )/stncM - 1)), lwd=1.5, col=adjustcolor("thistle", .6)) > lines(nc, abs19(asNumeric(stirlerr_simpl(nc, "MM2")/stncM - 1)), lwd=4, col=adjustcolor(20, .4)) > > k. <- k[-(1:6)] > legend("bottomleft", legend=paste0("k=", k.), bty="n", lwd=2, + col=k., lty=1:5, pch= c(1L:9L, 0L, letters)[k.]) > drawCuts("R4.4_0", axis=3) > > showProc.time() Time (user system elapsed): 3.711 0.016 4.303 > > ##--- Accuracy of "R4.4_0" ------------------------------------------------------- > > for(nc in list(seq(4.75, 28, by=1/512), # for a bigger pix + seq(4.75, 9, by=1/1024))) + { + ncM <- mpfr(nc, 1024) + stncM <- stirlerr(ncM) # the "true" values + stirl.440 <- stirlerr(nc, scheme = "R4.4_0") + stirl.3 <- stirlerr(nc, scheme = "R3") + relE440 <- asNumeric(relErrV(stncM, stirl.440)) + relE3 <- asNumeric(relErrV(stncM, stirl.3 )) + ## + plot(nc, abs19(relE440), xlab=quote(n), main = quote(abs(relErr(stirlerr(n, '"R4.4_0"')))), + type = "l", log = "xy", ylim = c(4e-17, 1e-13)) + mtextCuts(scheme="R4.4_0", cex=4/5) + drawCuts("R4.4_0", lty=2, lwd=2, axis=4) + drawEps.h() + if(max(nc) <= 10) abline(v = 5+(0:20)/10, lty=3, col=adjustcolor(4, 1/2)) + if(TRUE) { # but just so ... + c3 <- adjustcolor("royalblue", 1/2) + lines(nc, pmax(abs(relE3), 1e-18), col=c3) + title(quote(abs(relErr(stirlerr(n, '"R3"')))), adj=1, col.main = c3) + drawCuts("R3", lty=4, col=c3); mtextCuts(scheme="R3", adj=1, col=c3) + } + addOrd <- TRUE + addOrd <- dev.interactive(orNone=TRUE) + if(addOrd) { + if(max(nc) >= 100) { + i <- (15 <= nc & nc <= 85) # (no-op in [4.75, 7] !) + ni <- nc[i] + } else { i <- TRUE; ni <- nc } + for(k in 8:17) lines(ni, abs19(asNumeric(relErrV(stncM[i], stirlerr(ni, order=k)))), col=adjustcolor(k, 1/3)) + title(sub = "stirlerr(*, order k = 8:17)") + } + } ## for(nc ..) > > if(FALSE) + lines(nc, abs19(relE440))# *re* draw! > > showProc.time() Time (user system elapsed): 11.923 0.008 13.367 > > > palette("Tableau") > > ## Focus more: > stirlerrPlot <- function(nc, k, res=NULL, legend.xy = "left", full=TRUE, precB = 1024, + ylim = c(3e-17, 2e-13), cex = 5/4) { + stopifnot(require("Rmpfr"), require("graphics")) + if(is.list(res) && all(c("nc", "k", "relEc","splarelE") %in% names(res))) { ## do *not* recompute + list2env(res, envir = environment()) + } else { ## compute + stopifnot(is.finite(nc), nc > 0, length(nc) >= 100, k == as.integer(k), 0 <= k, k <= 20) + ncM <- mpfr(nc, precB) + stncM <- stirlerr(ncM) # the "true" values + stirlO.c <- sapply(k, function(k) stirlerr(nc, order = k)) + relEc <- asNumeric(stirlO.c/stncM -1) # "true" relative error + ## log |rel.Err| -- "linear" + ## smooth() on log-scale {and transform back}: + splarelE <- apply(log(abs19(relEc)), 2, function(y) exp(smooth.spline(y, df=4)$y)) + ## the direct formulas (default "R3", "MM2"): + arelEs0 <- abs(asNumeric(stirlerr_simpl(nc )/stncM - 1)) + arelEs2 <- abs(asNumeric(stirlerr_simpl(nc, "MM2")/stncM - 1)) + } + pch. <- c(1L:9L, 0L, letters)[k] + if(full) + matplotB(nc, abs19(relEc), col=k, pch = pch., cex=cex, ylim=ylim, log = "y", + xlab = quote(n), main = quote(abs(relErr(stirlerr(n, order==k))))) + else ## smooth only + matplotB(nc, splarelE, col=adjustcolor(k,2/3), pch=pch., lwd=2, cex=cex, ylim=ylim, log = "y", + xlab = quote(n), main = quote(abs(relErr(stirlerr(n, order==k))))) + mtext(paste("k =", deparse(k))) ; abline(h = 2^-(53:51), lty=3, lwd=1/2) + legend(legend.xy, legend=paste0("k=", k), bty="n", lwd=2, col=k, lty=1:5, pch = pch.) + abline(v = 5+(0:20)/10, lty=3, col=adjustcolor(10, 1/2)) + drawCuts("R4.4_0", axis=3) + if(full) { + matlines(nc, splarelE, col=adjustcolor(k,2/3), lwd=4) + lines(nc, pmax(arelEs0, 1e-19), lwd=1.5, col=adjustcolor( 2, 0.2)) + lines(nc, pmax(arelEs2, 1e-19), lwd=1, col=adjustcolor(10, 0.2)) + } + lines(nc, smooth.spline(arelEs0, df=12)$y, lwd=3, col= adjustcolor( 2, 1/2)) + lines(nc, smooth.spline(arelEs2, df=12)$y, lwd=3, col= adjustcolor(10, 1/2)) + invisible(list(nc=nc, k=k, relEc = relEc, splarelE = splarelE, arelEs0=arelEs0, arelEs2=arelEs2)) + } > > rr1 <- stirlerrPlot(nc = seq(4.75, 9.0, by=1/1024), + k = 7:20) > stirlerrPlot(res = rr1, full=FALSE, ylim = c(8e-17, 1e-13)) > if(interactive()) + stirlerrPlot(res = rr1) > > rr <- stirlerrPlot(nc = seq(5, 6.25, by=1/2048), k = 9:18) > stirlerrPlot(res = rr, full=FALSE, ylim = c(8e-17, 1e-13)) > > showProc.time() Time (user system elapsed): 8.074 0.103 8.708 > <0c> > > palette("default") > > if(do.pdf) { dev.off(); pdf("stirlerr-tst_order_k-vs-k1.pdf") } > > ##' Find 'cuts', i.e., a region c(k) +/- s(k) i.e. intervals [c(k) - s(k), c(k) + s(k)] > ##' where c(k) is such that relE(n=c(k), k) ~= eps) > > ##' 1. Find the c1(k) such that |relE(n, k)| ~= c1(k) * n^{-2k} > findC1 <- function(n, ks, e1 = 1e-15, e2 = 1e-5, res=NULL, precBits = 1024, do.plot = TRUE, ...) + { + if(is.list(res) && all(c("n", "ks", "arelE") %in% names(res))) { ## do *not* recompute, take from 'res': + list2env(res, envir = environment()) + } else { ## compute + stopifnot(require("Rmpfr"), + is.numeric(ks), ks == (k. <- as.integer(ks)), length(ks <- k.) >= 1, + length(e1) == 1L, length(e2) == 1L, is.finite(c(e1,e2)), e1 >= 0, e2 >= e1, + 0 <= ks, ks <= 20, is.numeric(n), n > 0, is.finite(n), length(n) >= 100) + nM <- mpfr(n, precBits) + stirM <- stirlerr(nM) # the "true" values + stirlOrd <- sapply(ks, function(k) stirlerr(n, order = k)) + arelE <- abs(asNumeric(stirlOrd/stirM -1)) # "true" relative error + } + arelE19 <- pmax(arelE, 1e-19) + ## log |rel.Err| -- "linear" + ## on log-scale {and transform back; for linear fit, only use values inside [e1, e2] + if(do.plot) # experi + matplotB(n, arelE19, log="xy", ...) + ## matplot(n, arelE19, type="l", log="xy", xlim = c(min(n), 20)) + + ## re-compute these, as they *also* depend on (e1, e2) + c1 <- vapply(seq_along(ks), function(i) { + k <- ks[i] + y <- arelE19[,i] + iUse <- e1 <= y & y <= e2 + if(sum(iUse) < 10) stop("only", sum(iUse), "values in [e1,e2]") + ## .lm.fit(cbind(1, log(n[iUse])), log(y[iUse]))$coefficients + ## rather, we *know* the error is c* n^{-2k} , i.e., + ## log |relE| = log(c) - 2k * log(n) + ## <==> c = exp( log|relE| + 2k * log(n)) + exp(mean(log(y[iUse]) + 2*k * log(n[iUse]))) + }, numeric(1)) + if(do.plot) { + drawEps.h() + for(i in seq_along(ks)) + lines(n, c1[i] * n^(-2*ks[i]), col=adjustcolor(i, 1/3), lwd = 4, lty = 2) + } + invisible(list(n=n, ks=ks, arelE = arelE, c1 = c1)) + } ## findC1() > > c1.Res <- findC1(n = 2^seq(2, 26, by=1/128), ks = 1:18) > (s.c1.fil <- paste0("stirlerr-c1Res-", myPlatform(), ".rds")) [1] "stirlerr-c1Res-R-d_87286_unix_DbnGNU_Ltrx_.rds" > saveRDS(c1.Res, file = s.c1.fil) > > > if(!exists("c1.Res")) { + c1.Res <- readRDS(s.c1.fil) + ## re-do the "default" plot of findC1(): + findC1(res = c1.Res, xaxt="n"); eaxis(1, sub10=2) + } > > ## the same, zoomed in: > findC1(res = c1.Res, xlim = c(4, 40), ylim = c(2e-17, 1e-12)) > ks <- c1.Res$ks; pch. <- c(1L:9L, 0L, letters)[ks] > legend("left", legend=paste0("k=", ks), bty="n", lwd=2, col=ks, lty=1:5, pch = pch.) > > ## smaller set : larger e1 : > c1.r2 <- findC1(res = c1.Res, xlim = c(4, 30), ylim = c(4e-17, 1e-13), e1 = 4e-15) > legend("left", legend=paste0("k=", ks), bty="n", lwd=2, col=ks, lty=1:5, pch = pch.) > > print(digits = 4, + cbind(ks, c1. = c1.Res$c1, c1.2 = c1.r2$c1, + relD = round(relErrV(c1.r2$c1, c1.Res$c1), 4))) ks c1. c1.2 relD [1,] 1 3.326e-02 3.331e-02 -0.0017 [2,] 2 9.532e-03 9.511e-03 0.0022 [3,] 3 7.042e-03 7.049e-03 -0.0009 [4,] 4 9.845e-03 9.811e-03 0.0035 [5,] 5 2.172e-02 2.169e-02 0.0015 [6,] 6 7.028e-02 6.967e-02 0.0088 [7,] 7 3.061e-01 3.041e-01 0.0066 [8,] 8 1.771e+00 1.744e+00 0.0156 [9,] 9 1.275e+01 1.259e+01 0.0128 [10,] 10 1.156e+02 1.129e+02 0.0235 [11,] 11 1.242e+03 1.224e+03 0.0152 [12,] 12 1.638e+04 1.592e+04 0.0294 [13,] 13 2.466e+05 2.427e+05 0.0162 [14,] 14 4.434e+06 4.331e+06 0.0238 [15,] 15 8.994e+07 8.846e+07 0.0167 [16,] 16 2.134e+09 2.082e+09 0.0253 [17,] 17 5.608e+10 5.515e+10 0.0169 [18,] 18 1.704e+12 1.655e+12 0.0292 > > c1.. <- c1.r2[c("ks", "c1")] # just the smallest part is needed here: > (s.c1.fil <- paste0("stirlerr-c1r2-", myPlatform(), ".rds")) [1] "stirlerr-c1r2-R-d_87286_unix_DbnGNU_Ltrx_.rds" > saveRDS(c1.., file = s.c1.fil) # was "stirlerr-c1.rds" > > ## 2. Now, find the n(k) +/- se.n(k) intervals > ## Use these c1 from above > > ##' Given c1-results relErr(n,k); |relE(n,k) ~= c1 * n^{-2k} , find n such that > ##' |relE(n,k)| line {in log-log scale} cuts y = eps, i.e., n* such that |relE(n,k)| <= eps for all n >= n* > n.ep <- function(eps, c1Res, ks = c1Res$ks, c1 = c1Res$c1, ...) { + stopifnot(is.finite(eps), length(eps) == 1L, eps > 0, + length(ks) == length(c1), is.numeric(c1), is.integer(ks), ks >= 1) + ## n: given k, the location where the |relE(n,k)| line {in log-log} cuts y = eps + ## |relE(n,k) ~= c1 * n^{-2k} <==> + ## log|relE(n,k)| ~= log(c1) - 2k* log(n) <==> + ## c := mean{ exp( log|relE(n,k)| + 2k* log(n) ) } ------- see findC1() + ## now, solve for n : + ## c1 * n^{-2k} == eps + ## log(c1) - 2k* log(n) == log(eps) + ## log(n) == (log(eps) - log(c1)) / (-2k) <==> + ## n == exp((log(c1) - log(eps)) / 2k) + exp((log(c1) - log(eps))/(2*ks)) + } > > ## get c1.. > if(!exists("c1..")) c1.. <- readRDS("stirlerr-c1.rds") > > ne2 <- n.ep(2^-51, c1Res = c1..) ## ok > ne1 <- n.ep(2^-52, c1Res = c1..) > ne. <- n.ep(2^-53, c1Res = c1..) > > form <- function(n) format(signif(n, 3), scientific=FALSE) > data.frame(k = ks, ne2 = form(ne2), ne1 = form(ne1), ne. = form(ne.), + cutoffs = form(rev(.stirl.cutoffs("R4.4_0")[-1]))) k ne2 ne1 ne. cutoffs 1 1 8660000.00 12200000.00 17300000.00 17400000.00 2 2 2150.00 2560.00 3040.00 3700.00 3 3 159.00 178.00 200.00 200.00 4 4 46.60 50.80 55.40 81.00 5 5 23.40 25.10 26.90 36.00 6 6 15.20 16.10 17.10 25.00 7 7 11.50 12.10 12.70 19.00 8 8 9.43 9.85 10.30 14.00 9 9 8.20 8.53 8.86 11.00 10 10 7.42 7.68 7.95 9.50 11 11 6.89 7.11 7.34 8.80 12 12 6.53 6.72 6.92 8.25 13 13 6.27 6.44 6.62 7.60 14 14 6.10 6.25 6.41 7.10 15 15 5.98 6.12 6.26 6.50 16 16 5.90 6.03 6.16 6.50 17 17 5.85 5.97 6.10 6.50 18 18 5.83 5.95 6.06 6.50 > > ## ------- Linux F 36/38 x86_64 (nb-mm5|v-lynne) > ## k ne2 ne1 ne. cutoffs > ## 1 8660000.00 12200000.00 17300000.00 17400000.00 > ## 2 2150.00 2560.00 3040.00 3700.00 > ## 3 159.00 178.00 200.00 200.00 > ## 4 46.60 50.80 55.40 81.00 > ## 5 23.40 25.10 26.90 36.00 > ## 6 15.20 16.10 17.10 25.00 > ## 7 11.50 12.10 12.70 19.00 > ## 8 9.43 9.85 10.30 14.00 > ## 9 8.20 8.53 8.86 11.00 > ## 10 7.42 7.68 7.95 9.50 > ## 11 6.89 7.11 7.34 8.80 > ## 12 6.53 6.72 6.92 8.25 > ## 13 6.27 6.44 6.62 7.60 > ## 14 6.10 6.25 6.41 7.10 > ## 15 5.98 6.12 6.26 6.50 * (not used) > ## 16 5.90 6.03 6.16 6.50 * " " > ## 17 5.85 5.97 6.10 6.50 * " " > ## 18 5.83 5.95 6.06 6.50 << used all the way down to 5.25 > > ## ok --- correct order of magnitude ! --- good! > > > ## 2b. find *interval* around the 'n(eps)' values > > ## -- Try simply > d.k <- ne. - ne1 > ## interval > int.k <- cbind(ne1 - d.k, + ne1 + d.k) > ## look at e.g. > data.frame(k=ks, `n(k)` = form(ne1), int = form(int.k)) k n.k. int.1 int.2 1 1 12200000.00 7180000.00 17300000.00 2 2 2560.00 2070.00 3040.00 3 3 178.00 156.00 200.00 4 4 50.80 46.20 55.40 5 5 25.10 23.30 26.90 6 6 16.10 15.20 17.10 7 7 12.10 11.40 12.70 8 8 9.85 9.41 10.30 9 9 8.53 8.19 8.86 10 10 7.68 7.41 7.95 11 11 7.11 6.88 7.34 12 12 6.72 6.52 6.92 13 13 6.44 6.27 6.62 14 14 6.25 6.10 6.41 15 15 6.12 5.98 6.26 16 16 6.03 5.90 6.16 17 17 5.97 5.85 6.10 18 18 5.95 5.83 6.06 > ## k n.k. int.1 int.2 > ## 1 12200000.00 7180000.00 17300000.00 > ## 2 2560.00 2070.00 3040.00 > ## 3 178.00 156.00 200.00 > ## 4 50.80 46.20 55.40 > ## 5 25.10 23.30 26.90 > ## 6 16.10 15.20 17.10 > ## 7 12.10 11.40 12.70 > ## 8 9.85 9.41 10.30 > ## 9 8.53 8.19 8.86 > ## 10 7.68 7.41 7.95 > ## 11 7.11 6.88 7.34 > ## 12 6.72 6.52 6.92 > ## 13 6.44 6.27 6.62 > ## 14 6.25 6.10 6.41 > ## 15 6.12 5.98 6.26 > ## 16 6.03 5.90 6.16 > ## 17 5.97 5.85 6.10 > ## 18 5.95 5.83 6.06 > > ##' as function {well, *not* computing c1.k from scratch > nInt <- function(k, c1.k, ep12 = 2^-(52:53)) { + if(length(k) == 1L) { # special convention to call for *one* k, with c1.k vector + stopifnot(k == (k <- as.integer(k)), k >= 1, length(c1.k) >= k) + c1.k <- c1.k[k] + } + + ## see n.ep() above + n_ <- function(eps, k, c1) { + stopifnot(is.finite(eps), length(eps) == 1L, eps > 0, + length(k) == length(c1), is.numeric(c1), is.integer(k), k >= 1) + exp((log(c1) - log(eps))/(2*k)) + } + + ne1 <- n_(ep12[1], k, c1.k) + ne. <- n_(ep12[2], k, c1.k) + d.k <- ne. - ne1 + stopifnot(d.k > 0) + ## interval: {"fudge" 0.5 / 2.5} from results -- also 'noLdbl' gives *quite* different pic!: + odd <- k %% 2 == 1 + cbind(ne1 - ifelse( odd & noLdbl, 1.5, 0.5) * d.k, + ne1 + ifelse(!odd , 8, 2.5) * d.k) + } > > nInt(k= 1, c1..$c1) [,1] [,2] [1,] 9711838 24932455 > nInt(k= 2, c1..$c1) [,1] [,2] [1,] 2316.237 6430.581 > nInt(k=18, c1..$c1) [,1] [,2] [1,] 5.888326 6.870896 > > nints.k <- nInt(ks, c1..$c1) > ## for printing > form(as.data.frame( nints.k )) V1 V2 1 9710000.00 24900000.00 2 2320.00 6430.00 3 167.00 232.00 4 48.50 87.50 5 24.20 29.60 6 15.70 23.80 7 11.70 13.60 8 9.63 13.30 9 8.36 9.36 10 7.54 9.85 11 7.00 7.68 12 6.62 8.29 13 6.36 6.88 14 6.17 7.51 15 6.05 6.48 16 5.96 7.09 17 5.91 6.28 18 5.89 6.87 > > ## (-.5 , +2.5) ## originally ( -1, +1) > ## 1 9710000.00 24900000.00 # 7180000.00 17300000.00 > ## 2 2320.00 3770.00 # 2070.00 3040.00 > ## 3 167.00 232.00 # 156.00 200.00 > ## 4 48.50 62.30 # 46.20 55.40 > ## 5 24.20 29.60 # 23.30 26.90 > ## 6 15.70 18.50 # 15.20 17.10 > ## 7 11.70 13.60 # 11.40 12.70 > ## 8 9.63 10.90 # 9.41 10.30 > ## 9 8.36 9.36 # 8.19 8.86 > ## 10 7.54 8.36 # 7.41 7.95 > ## 11 7.00 7.68 # 6.88 7.34 > ## 12 6.62 7.21 # 6.52 6.92 > ## 13 6.36 6.88 # 6.27 6.62 > ## 14 6.17 6.64 # 6.10 6.41 > ## 15 6.05 6.48 # 5.98 6.26 > ## 16 5.96 6.36 # 5.90 6.16 > ## 17 5.91 6.28 # 5.85 6.10 > ## 18 5.89 6.24 # 5.83 6.06 > > ## 3. Then for each of the intervals, compare order k vs k+1 > ## -- ==> optimal cutoff { how much platform dependency ?? } > > ### Here, compute only > find1cuts <- function(k, c1, + n = nInt(k, c1), # the *set* of n's or the 'range' + len.n = 1000, + precBits = 1024, nM = mpfr(n, precBits), + stnM = stirlerr(nM), + stirlOrd = sapply(k+(0:1), function(.k.) stirlerr(n, order = .k.)), + relE = asNumeric(stirlOrd/stnM -1), # "true" relative error for the {k, k+1} + do.spl=TRUE, df.spline = 9, # df = 5 gives 2 cutpoints for k==1 + do.low=TRUE, f.lowess = 0.2, + do.cobs = require("cobs", quietly=TRUE), tau = 0.90) + { + ## check relErrV( stirlerr(n, order=k ) vs + ## stirlerr(n, order=k+1) + if(length(n) == 2L) + if(n[1] < n[2]) n <- seq(n[1], n[2], length.out = len.n) + else stop("'n' must be *increasing") + force(relE) + y <- abs19(relE) + ## NB: all smoothing --- as in stirlerrPlot() above -- should happen in log-space + ## (log(abs19(relEc)), 2, function(y) exp(smooth.spline(y, df=4)$y)) + ly <- log(y) # == log(abs19(relE)) == log(max(|r|, 1e-19)) + if(do.spl) {## + s1 <- exp(smooth.spline(ly[,1], df=df.spline)$y) + s2 <- exp(smooth.spline(ly[,2], df=df.spline)$y) + } + if(do.low) { ## lowess + s1l <- exp(lowess(ly[,1], f=f.lowess)$y) + s2l <- exp(lowess(ly[,2], f=f.lowess)$y) + } + ## also use cobs() splines for the 90% quantile !! + EE <- environment() # so can set do.cobs to FALSE in case of error + if(do.cobs) { ## <==> require("cobs") # yes, this is in tests/ + cobsF <- function(Y) cobs(n, Y, tau=tau, nknots = 6, lambda = -1, + print.warn=FALSE, print.mesg=FALSE) + ## sparseM::chol(<matrix.csr>) now gives error when it gave warning {about singularity} + cobsF <- function(Y) { + r <- tryCatch(cobs(n, Y, tau=tau, nknots = 6, lambda = -1, + print.warn=FALSE, print.mesg=FALSE), + error = identity) + if(inherits(r, "error")) { + assign("do.cobs", FALSE, envir = EE) # and return + list(fitted = FALSE) + } + else + r + } + cs1 <- exp(cobsF(ly[,1])$fitted) + cs2 <- exp(cobsF(ly[,2])$fitted) + } + smooths <- list(spl = if(do.spl ) cbind(s1, s2 ), + low = if(do.low ) cbind(s1l,s2l), + cobs= if(do.cobs) cbind(cs1,cs2)) + ## diffL <- list(spl = if(do.spl ) s2 -s1, + ## low = if(do.low ) s2l-s1l, + ## cobs= if(do.cobs) cs2-cs1) + ### FIXME: simplification does not always *work* -- (i, n.) are not always ok + ### ------ notably within R-devel-no-ldouble {hence probably macOS M1 ... ..} + sapply(smooths, function(s12) { d <- s12[,2] - s12[,1] + ## typically a (almost or completely) montone increasing function, crossing zero *once* + ## compute cutpoint: + ## i := the first n[i] with d(n[i]) >= 0 + i <- which(d >= 0)[1] + if(length(i) == 1L && !is.na(i) && i > 1L) { + i_ <- i - 1L # ==> d(n[i_]) < 0 + ## cutpoint must be in [n[i_], n[i]] --- do linear interpolation + n. <- n[i_] - (n[i] - n[i_])* d[i_] / (d[i] - d[i_]) + } else { + if(length(i) != 1L) i <- -length(i) + n. <- NA_integer_ + } + c(i=i, n.=n.) + }) -> n.L + + list(k=k, n=n, relE = unname(relE), smooths=smooths, i.n = n.L) + } ## find1cuts() > > k. <- 1:15 > system.time( + ## Failed on lynne [2024-06-04, R 4.4.1 beta] with + ## Error in .local(x, ...) : insufficient space ---> SparseM :: chol(<..>) + ## ==> now we catch this inside find1cuts(): + resL <- lapply(setNames(,k.), function(k) find1cuts(k=k, c1=c1..$c1)) + ) ## -- warnings, notably from cobs() not converging user system elapsed 24.641 0.015 29.172 There were 34 warnings (use warnings() to see them) > ## needs 12 sec (!!) user system elapsed = > (s.find15.fil <- paste0("stirlerr-find1_1-15_", myPlatform(), ".rds")) [1] "stirlerr-find1_1-15_R-d_87286_unix_DbnGNU_Ltrx_.rds" > ## now we catch cobs() errors {from SparseM::chol}, > ## okCuts <- !inherits(resL, "error") > ## if(okCuts) { > saveRDS(resL, file = s.find15.fil) # was "stirlerr-find1_1-15.rds" > ## } else traceback() > ## 11: stop(mess) > ## 10: .local(x, ...) > ## 9: chol(e, tmpmax = tmpmax, nsubmax = nsubmax, nnzlmax = nnzlmax) > ## 8: chol(e, tmpmax = tmpmax, nsubmax = nsubmax, nnzlmax = nnzlmax) > ## 7: rq.fit.sfnc(Xeq, Yeq, Xieq, Yieq, tau = tau, rhs = rhs, control = rqCtrl) > ## 6: drqssbc2(x, y, w, pw = pw, knots = knots, degree = degree, Tlambda = if (select.lambda) lambdaSet else lambda, > ## constraint = constraint, ptConstr = ptConstr, maxiter = maxiter, > ## trace = trace - 1, nrq, nl1, neqc, niqc, nvar, tau = tau, > ## select.lambda = select.lambda, give.pseudo.x = keep.x.ps, > ## rq.tol = rq.tol, tol.0res = tol.0res, print.warn = print.warn) > ## 5: cobs(n, Y, tau = tau, nknots = 6, lambda = -1, print.warn = FALSE, > ## print.mesg = FALSE) at stirlerr-tst.R!udBzpT#32 > ## 4: cobsF(ly[, 1]) at stirlerr-tst.R!udBzpT#34 > ## 3: find1cuts(k = k, c1 = c1..$c1) at #1 > ## 2: FUN(X[[i]], ...) > ## 1: lapply(setNames(, k.), function(k) find1cuts(k = k, c1 = c1..$c1)) > > ok1cutsLst <- function(res) { + stopifnot(is.list(res), sapply(res, is.list)) # must be list of lists + cobsL <- lapply(lapply(res, `[[`, "smooths"), `[[`, "cobs") + vapply(cobsL, is.array, NA) + } > (resLok <- ok1cutsLst(resL)) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE > ## 1 2 3 4 5 6 ...... 15 > ## FALSE TRUE TRUE TRUE TRUE TRUE ...... TRUE > > > if(FALSE) { + ## e.g. in R-devel-no-ldouble: + (r1 <- find1cuts(k=1, c1=c1..$c1))$i.n # list --- no longer ok {SparseM::chol -> insufficient space} + (r2 <- find1cuts(k=2, c1=c1..$c1))$i.n # "good" + (r3 <- find1cuts(k=3, c1=c1..$c1))$i.n # 3-vector: only 3x 'i' == 1 + } > > ## if(okCuts) { > mult.fig(15, main = "stirlerr(n, order=k) vs order = k+1")$old.par -> opar > invisible(lapply(resL[resLok], plot1cuts)) > ## plus the "last" ones {also showing that k=15 is worse here anyway than k=17} > str(r17 <- find1cuts(k=17, n = seq(5.1, 6.5, length.out = 1500), c1=c1..$c1)) List of 5 $ k : num 17 $ n : num [1:1500] 5.1 5.1 5.1 5.1 5.1 ... $ relE : num [1:1500, 1:2] 5.31e-14 5.29e-14 5.25e-14 5.21e-14 5.19e-14 ... $ smooths:List of 3 ..$ spl : num [1:1500, 1:2] 5.29e-14 5.26e-14 5.23e-14 5.19e-14 5.16e-14 ... .. ..- attr(*, "dimnames")=List of 2 .. .. ..$ : NULL .. .. ..$ : chr [1:2] "s1" "s2" ..$ low : num [1:1500, 1:2] 5.29e-14 5.26e-14 5.23e-14 5.20e-14 5.17e-14 ... .. ..- attr(*, "dimnames")=List of 2 .. .. ..$ : NULL .. .. ..$ : chr [1:2] "s1l" "s2l" ..$ cobs: NULL $ i.n : int [1:2, 1:3] 1 NA 1 NA NA NA ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:2] "i" "n." .. ..$ : chr [1:3] "spl" "low" "cobs" Warning messages: 1: In min(sol1["k", i.keep]) : no non-missing arguments to min; returning Inf 2: In min(sol1["k", i.keep]) : no non-missing arguments to min; returning Inf > plot1cuts(r17) # no-ldouble is *very* different than normal: k *much better* than k+1 Error in stopifnot(is.list(smooths), (nS <- length(smooths)) >= 1L, sapply(smooths, : 'list' object cannot be coerced to type 'integer' Calls: plot1cuts -> stopifnot -> eval -> eval -> stopifnot Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Package DPQmpfr

Current CRAN status: OK: 13

Package expm

Current CRAN status: OK: 13

Package fracdiff

Current CRAN status: OK: 13

Package lokern

Current CRAN status: OK: 13

Package longmemo

Current CRAN status: WARN: 2, NOTE: 1, OK: 10

Version: 1.1-3
Check: re-building of vignette outputs
Result: WARN Error(s) in re-building vignettes: --- re-building ‘BspecFGN.Rnw’ using Sweave Loading required package: longmemo Error: processing vignette 'BspecFGN.Rnw' failed with diagnostics: Running 'texi2dvi' on 'BspecFGN.tex' failed. LaTeX errors: ! TeX capacity exceeded, sorry [input stack size=10000]. \GenericWarning ...tchoice@ \else 4\fi \endcsname \protect \GenericWarning l.170 ... always fulfilled for $x in \{1,2,\dots\} $, as ! ==> Fatal error occurred, no output PDF file produced! --- failed re-building ‘BspecFGN.Rnw’ SUMMARY: processing the following file failed: ‘BspecFGN.Rnw’ Error: Vignette re-building failed. Execution halted Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 1.1-3
Check: tests
Result: NOTE Running 'FEXP-ex.R' [1s] Comparing 'FEXP-ex.Rout' to 'FEXP-ex.Rout.save' ... OK Running 'ceta-ex.R' [3s] Comparing 'ceta-ex.Rout' to 'ceta-ex.Rout.save' ...75c75 < [2,] -8.5705517 13.00507 -5.2497156 --- > [2,] -8.5705518 13.00507 -5.2497156 86c86 < [1,] 7.4008136 -7.25886 0.0763714 --- > [1,] 7.4008136 -7.25886 0.0763715 88c88 < [3,] 0.0763714 -5.38985 6.8074697 --- > [3,] 0.0763715 -5.38985 6.8074697 111c111 < [2,] -6.6156657 11.346062 -5.4359093 --- > [2,] -6.6156658 11.346062 -5.4359093 116c116 < [1,] 6.6254802 -6.577171 0.1320888 --- > [1,] 6.6254801 -6.577171 0.1320888 Running 'sim-ex.R' [0s] Comparing 'sim-ex.Rout' to 'sim-ex.Rout.save' ... OK Running 'spec-ex.R' [14s] Flavor: r-devel-windows-x86_64

Package lpridge

Current CRAN status: OK: 13

Package nor1mix

Current CRAN status: OK: 13

Package plugdensity

Current CRAN status: OK: 13

Package Rmpfr

Current CRAN status: NOTE: 3, OK: 10

Version: 0.9-5
Check: Rd cross-references
Result: NOTE Found the following Rd file(s) with Rd \link{} targets missing package anchors: mpfr-class.Rd: is.whole mpfr-utils.Rd: asNumeric mpfr.Rd: asNumeric mpfrArray.Rd: asNumeric mpfrMatrix-utils.Rd: asNumeric pbetaI.Rd: bigq utils.Rd: is.whole Please provide package anchors for all Rd \link{} targets not in the package itself and the base packages. Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-windows-x86_64

Package robustbase

Current CRAN status: OK: 13

Package robustX

Current CRAN status: OK: 13

Package round

Current CRAN status: OK: 13

Package sca

Current CRAN status: OK: 13

Package sfsmisc

Current CRAN status: OK: 13

Package stabledist

Current CRAN status: OK: 13

Package supclust

Current CRAN status: OK: 13

Package VLMC

Current CRAN status: ERROR: 2, OK: 11

Version: 1.4-4
Check: PDF version of manual
Result: WARN LaTeX errors when creating PDF version. This typically indicates Rd problems. LaTeX errors found: ! TeX capacity exceeded, sorry [input stack size=10000]. \@latex@warning #1->\GenericWarning {\space \space \space \@spaces \@spaces ... l.739 \eqn{j \in \{0,1,\dots\}}{} , as these are rational ! ==> Fatal error occurred, no output PDF file produced! Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 1.4-4
Check: PDF version of manual without index
Result: ERROR
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 1.4-4
Check: for non-standard things in the check directory
Result: NOTE Found the following files/directories: ‘VLMC-manual.tex’ Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc