CSIRO Mathematical and Information Sciences

An Introduction to R:
Software for Statistical Modelling & Computing

Course Materials and Exercises

Petra Kuhnert and Bill Venables

CSIRO Mathematical and Information Sciences

Cleveland, Australia

()

CSIRO

© CSIRO Australia, 2005

(©CSIRO Australia 2005

All rights are reserved. Permission to reproduce individual copies of this document for
personal use is granted. Redistribution in any other form is prohibited.

The information contained in this document is based on a number of technical, circum-
stantial or otherwise specified assumptions and parameters. The user must make its own
analysis and assessment of the suitability of the information or material contained in or
generated from the use of the document. To the extent permitted by law. CSIRO excludes
all liability to any party for any expenses, losses, damages and costs arising directly or
indirectly from using this document.

Contents

An Elementary Introduction to R 11
Whirlwind Tourof R o 13
Example 1: The Whiteside InsulationData 13
Example 2: Cars and Fuel Economy 15
Example 3: Images of Volcanic Activity 19
Example 4: CoastlineandMaps 19
Rand the Tinn-REditor 21
Rand the Tinn-R Editor 21
Obtaining R 21
RManuals 22

R Reference Material 22
How Does R Work and How Do I Work withit? 23
Installing and Loading R Packages 25
Customisation L 26

The Rprofile.site file: AnExample 27
What Editor canTusewithR, 28

The Tinn-R Editor: A Demonstration 28

The R Language: BasicSyntax 29

The R Language: Data Types 35

The R Language: Missing, Indefinite and Infinite Values. 37
Distributions and Simulation 38
RObjects e 45

Data ObjectsinR 45
Creating Vectors 45
Creating Matrices 49
Manipulating Data: An Example 51
Accessing Elements of a Vector or Matrix 53
Lists 56
Example: Cars93 Dataset 59
Graphics: An Introductiono Lo Lo o 61
AnatomyofaPlot. L 61
Overview of Graphics Functions 64
Displaying Univariate Data 65
Working with Time Series Objects 76
Displaying Bivariate Data 80
Labelling and Documenting Plots 85
Displaying Higher Dimensional Data 86
ManipulatingData 97
Sorting 97
Datesand Times 99
Tables 100
Split . . . o 101
with , subset andtransform Functions. 102
Vectorised Calculations 103
Classical Linear Models, 109
Statistical ModelsinR Lo oo 109
Model Formulae o o 109
Generic Functions for Inference 109
Example: The JankaData 111
Example: Jowa Wheat Yield Data 117
A Flexible Regression 120

© CSIRO Australia, 2005 Course Materials and Exercises

Example: Petroleum Data 123
Non-Linear Regression 129
Example: Stormer Viscometer Data 129
Overview and Description 0L 129
Fitting the Model and Looking at the Results 130
Self Starting Models L oo 131
Example: MuscleData 133
FinalNotes 139
Generalized Linear Modelling 141
Methodology 141
Example: Budworm Data 144
Example: Low Birth Weight 150
GLMExtensions 157
The Negative Binomial Distribution 157
Multinomial Models o oo 163
Example: Copenhagen HousingData 163
Proportional OddsModels 167
Generalized Additive Models: An Introduction 169
Methodology 169
Example: The Iowa Wheat Yield Data 170
Example: RockData 174
Advanced Graphics L L 179
Lattice Graphics 179
Example: Whiteside Data 179
Changing Trellis Parameters & AddingKeys 183
Example: Stormer Viscometer Data 185
Adding Fitted Values o L 188
Output Over Several Pages 189
Example: Volcanos in New Zealand 191

© CSIRO Australia, 2005 Course Materials and Exercises

Colour Palettes 194
Mathematical Expressions L0 oL 198
Maps, Coastlines and Co-ordinate Systems 199
Importing and Exporting o Lo 203
Getting StuffIn L 203
EditingData 206
Importing Binary Files 206
Readingin Large Data Files 207
Getting StuffOut o 209
Getting Out Graphics L o 211
Mixed Effects Models: An Introduction 213
Linear Mixed EffectsModels 213
Generalized Linear Mixed Effects Models 220
Programming e 237
Introductory Example L o o 237
The Call Component and Updating 241
Combining Two Estimates 242
SomelLessons 243
Some Under-used Array and Other Facilities 243
Some Little-used Debugging Functions and Support Systems 245
Compiled Code and Packages 245
Making and Maintaining Extensions 249
Neural Networks: An Introduction 251
Methodology 251
Regression Function 252
Penalized Estimation 252
Tree-based Models I: Classification Trees 259
Decision Tree Methodology 259
Recursive Partitioning And Regression Trees (RPART) 263

© CSIRO Australia, 2005 Course Materials and Exercises

A Classification Example: Fisher’sIrisData 265
Pruning Trees 270
Predictions 279
PlottingOptions 279
Tree-based Models II: Regression Trees and Advanced Topics 283
RegressionTrees 283
Advanced Topics 297
Appendix I: Datasets 301
Absenteeism from School in NSW 0o L. 303
Cars93 Dataset 304
CarRoad TestsData, 306
Copenhagen Housing Conditions Study 307
Fisher’'sIrisData 308
Iowa Wheat Yield Data 309
Janka Hardness Data 310
Lung Disease Dataset 311
MoretonBay Data o o 00000 312
Muscle Contractionin Rat Hearts 313
Petroleum Rock Samples 314
Petrol RefineryData., 315
Recovery of Benthosonthe GBR 316
Stormer Viscometer Data 317
US State Factsand Figures L oo 318
VolcanoData 319
Whiteside’s Data 320
Appendix II: Laboratory Exercises 321
Lab 1: R - An Introductory Session 323
Lab 2: Understanding RObjects 331

© CSIRO Australia, 2005 Course Materials and Exercises

Animal Brainand Body Sizes 0 0000 331
HOHolck’sCatData 331
Combining Two Data Frames with Some Common Rows 333
The Tuggeranong HouseData 334
The AnorexiaData 335
Lab 3: Elementary Graphics 337
Scatterplots and Related Issues 337
StudentSurvey Data Lo oo 338
The Swiss Banknote Data 339
Lab 4: ManipulatingData 341
Birth Dates 341
TheCloudData 341
TheLongleyData 343
Lab 5: Classical Linear Models 345
H O Holck’s cats data, revisited 345
CarsDataset 345
The Painters Data 346
Lab 6: Non-Linear Regression 347
The Stormer Viscometer Data 347
TheSteam Data 347
Lab 7& 8: Generalized Linear Modelsand GAMs 349
Snail Mortality Data o o 349
TheJankaData 349
The Birth Weight Data 350
Lab 9: Advanced Graphics L. 351
Graphics Examples Lo 351
The AkimaData 351
Heights of New York Choral Society Singers 351
Lab 10: Mixed Effects Models 353

© CSIRO Australia, 2005 Course Materials and Exercises

The Rail Dataset 353

The Pixel Dataset 354

Lab 11: Programming e 355
Elementary Programming Examples 355
Round Robin Tournaments 357

Lab 12: Neural Networks o 359
TheRockData 359
TheCrabData 359

Lab 13& 14: Classification and Regression Trees 361
The Crab Data Revisited 361

The CuckooData 361

The StudentSurvey Data 361
Bibliography 363

© CSIRO Australia, 2005 Course Materials and Exercises

Elementary Introduction To R

Whirlwind Tour of R 13

Whirlwind Tour of R

The following examples provide a summary of analyses conducted in R. Results are not
shown in this section and are left for the reader to verify.

Example 1: The Whiteside Insulation Data

Description

The Whiteside Insulation dataset is described in detail in Appendix I. The dataset consists
of the weekly gas consumption and average external temperature records at a house in
south-east England taken over two heating seasons:

e 26 weeks before cavity-wall insulation was installed

e 30 weeks after cavity-wall insulation was installed
The aim of the experiment was to examine the effect of insulation on gas consumption.
The dataset consists of 56 rows and three columns that contain information on:

e Insul : Insulation (before/after)

e Temp Temperature in degrees Celsius

e Gas: Gas consumption in 1000s of cubic feet

Exploratory Analysis
Prior to modelling, an exploratory analysis of the data is often useful as it may highlight
interesting features of the data that can be incorporated into a statistical analysis.

Figure 1 is the result of a call to the high level lattice function xyplot . The plot pro-
duces a scatterplot of gas consumption versus the average external temperature for each
treatment type before insulation and similarly, after insulation).

Statistical Modelling

Based on the exploratory plots shown in Figure 1, it seems appropriate to fit straight lines
through the points and examine whether these lines are different for varying treatment
levels.

The analyses suggest that a straight line relationship is suitable for the data at each treat-
ment level. In fact, nearly 95% of the variation is explained for the model using data prior
to the insulation being installed, while approximately 81% of the variation was explained
by the model incorporating data post insulation. Slopes for both models are very similar.

© CSIRO Australia, 2005 Course Materials and Exercises

14 Whirlwind Tour of R

Gas consumption (cu.ft/1000)

! ! ! ! ! ! ! ! ! ! ! !
2 4 6 8 10

Average external temperature (deg. C)

Figure 1: Scatterplot of gas consumption versus average external temperature for the two
treatment levels: prior to insulation and post insulation. Least square lines are overlayed.

We can consider fitting a single model using both datasets. To check for curvature, we
can introduce a polynomial term for the slopes. The results indicate that second order
polynomial terms are not required in the model.

In the previous model fit where both lines were fitted in the one model, there is a sugges-
tion that the lines may be parallel. To test this theory, we can fit a model with an overall
treatment effect and an overall effect of temperature.

This model (not shown) suggests that there is a marked decrease in gas consumption after
insulation was installed compared to having no insulation. The model also suggests that

as the average external temperature increased, gas consumption decreased by a factor of
0.33.

Although the terms in the model are significant, the level of variation explained is lower
than the model where both lines were fitted (~91%). We can test whether separate regres-
sion lines fitted in the one model may be more appropriate using an analysis of variance.

It is useful to check the fit of the model using some diagnostic plots which examine the
residuals with the assumptions of the model.

Figure 2 shows residual plots from the model where both lines were fitted. Residual plots
indicate that the fit of the model is reasonable as both plots show no obvious departures
from Normality.

© CSIRO Australia, 2005 Course Materials and Exercises

Whirlwind Tour of R 15

Plot of Residuals Normal Q-Q Plot

0.5
0.5

,,

R
Sample Quantiles
0.0

0.5
0.5

1.0
1.0

T T T T T T ! T T T T T
2 3 4 5 6 7 -2 -1 0 1 2

Fitted Values Theoretical Quantiles

(a) (b)

Figure 2: Residual plots of fitted model to the Whiteside Gas Consumption dataset. Fig-
ure (a) displays a plot of the residuals versus fitted values. Figure (b) presents a Normal
quantile-quantile plot.

Example 2: Cars and Fuel Economy

The Cars93 dataset is described in detail in Appendix I and by Lock (1993). It consists of
a random list of passenger car makes and models (93 rows and 23 columns of data).

The information collected can be broken up into the type of data each variable represents.
These are described below.

e Factors: AirBags, Cylinders, DriveTrain, Make, Man.trans.avail, Manufacturer, Model,
Origin, Type

e Numeric:

— Integer: MPG.city, MPG.highway, Luggage.room, Length, Horsepower, Pas-
sengers, Rev.per.mile, RPM, Turn.circle, Weight, Wheelbase, Width.

— Double: EngineSize, Fuel.tank.capacity, Max.Price, Min.Price,
Price, Rear.seat.room

We can produce a scatterplot of some of the data in this data frame. An interesting plot
that can be produced is a scatterplot to investigate the relationship between gallons per
100 miles and weight. The plot is shown in Figure 3.

The scatterplot shown in Figure 3(a) suggests a possible linear relationship between gal-
lons per 100 miles and weight. Note, the response is easier to model linearly if we use gal-
lons per mile rather than miles per gallon. Before rushing into a formal analysis, we can
investigate this assumption graphically, by reproducing the scatterplot with least square

© CSIRO Australia, 2005 Course Materials and Exercises

16 Whirlwind Tour of R

Cars(1993 Makes & Models) Cars(1993 Makes & Models)

5.0 4 o L] - 5.0 4 o L]

4.5 - -

4.0 - () o ooe o o nd

3.5 -

Gallons per 100 miles
[]
[]
[]
[]
L]
L]
Gallons per 100 miles

3.0

25 =

2.0 [= 2.0 .o

| | | | | | |
2000 2500 3000 3500 4000 2000 2500 3000 3500 4000
Weight Weight

(a) (b)

Figure 3: Scatterplot of gallons per 100 miles and weight of 1993 model cars (a) without
and (b) with a least squares line overlayed

lines overlayed. Figure 3(b) shows a reasonable linear relationship between gallons per
100 miles and weight.

We can model this relationship more formally using least squares regression. The model
(not shown) suggests a strong linear relationship between the weight of each vehicle and
mileage. In fact, for every one pound increase, the gallons per 100 miles is expected to
increase by a factor of 0.000829.

Examining the residuals from this fit (Figure 4) reveal a fairly reasonable fit with residuals
that are behaving well with respect to Normal distribution assumptions.

We now extend the analysis to examine the relationship between mileage, weight and
type of vehicle. Figure 5 shows a scatterplot of the data broken up by type of vehicle
into six separate panels. This plot was produced using the following code: From Figure 5
we can see that as weight increases (for all types), the fuel consumption increases also.
We also note some large variation between car types. To investigate these relationships
further we fit a random effects model that has

e weight as the main predictor
¢ a term that incorporates type of vehicle
e arandom intercept term associated with Manufacturer

The results from the model indicate that both type of car and weight are important pre-

© CSIRO Australia, 2005 Course Materials and Exercises

Whirlwind Tour of R

17

Residuals

Figure 4: Residuals from fitted linear model to the Cars93 dataset.

0.0 0.5

-05

Gallons per 100 miles

Residual Plot
o
o
° o
o
° o ° o §
€
%J%%J 0 6099 o s
o
,,,o,,,,",g?o,oo,,%‘g}"”é g
° 2
o @%0 QJQJO E
@ 9 o <
o © L)]
o o ®o
o o o
o
o

5.0 4

4.5 —

4.0

35

3.0 1

25

2.0 1

Fitted Values

Frequency

0.0 0.5

-05

15 20 25

10

Normal Q-Q Plot of Residuals

Theoretical Quantiles

Histogram of Residuals

I T T 1
-05 0.0 0.5 1.0

resid(cars93.Im)

Cars(1993 Makes & Models)

2000 2500 3000 3500 4000

1 1
Small

1 1 1
Sporty

| | |
Van

e e —50
LN]
® 45
L] L]
L] L]
o ° — 4.0
L]
o ° ° — 35
L) L]
L] l.
e @e ° - 3.0
(] L]
L] l.
° - 25
L]
L]
° — 20
Compact Large Midsize
o _
L]
LN]
o e o -
Ld L] o @ 0 e
L) o o
(4 L J [|-
L) o0
[J o o
o oo L]
o0 r
L]
I I I I I I I I I I
2000 2500 3000 3500 4000 2000 2500 3000 3500 4000
Weight

Figure 5: Panel plot of the Cars93 data showing scatterplots of gallons per 100 miles
versus weight broken up by vehicle type.

© CSIRO Australia, 2005

Course Materials and Exercises

18 Whirlwind Tour of R

dictors for gallons per 100 miles. The baseline type is Compact, (panel 4 in Figure 5).
With respect to compact vehicles, vans and to some extent, sporty vehicles cost more to
run. This can be seen in the scatterplots shown in Figure 5.

The random effect predictions are shown below

Honda -0.223489568 Eagle 0.022092001
Geo -0.202257478 Subaru 0.031985280
BMW -0.160629835 Cadillac 0.036147200
Saturn -0.103301920 Acura 0.047566558
Mazda -0.098418520 Mercedes-Benz 0.051035604
Pontiac -0.095375212 Chrysler 0.052572242
Suzuki -0.088319971 Audi 0.054595702
Oldsmobile -0.082034099 Mitsubishi 0.076673770
Chevrolet -0.080333517 Hyundai 0.092313779
Toyota -0.079260798 Ford 0.105985086
Lincoln -0.059304804 Volkswagen 0.107058971
Buick -0.057098894 Infiniti 0.107264569
Nissan -0.052045909 Mercury 0.122912226
Chrylser -0.021220000 Dodge 0.142520788
Plymouth -0.007800792 Saab 0.157016239
Volvo 0.016483859 Lexus 0.186667440

The random effect predictions show some variation (but only slight). There appears to be
two different types of vehicles:

e economical: good fuel consumption e.g. Honda, Geo, BMW, Saturn, and Mazda
e expensive: higher fuel consumption per mile e.g. Lexus, Saab, Dodge, Mercury

The estimate of the variance for the random effects terms is 0.0237. The errors relating to
variation not accounted for in the model is almost negligible (0.062).

We may choose to investigate the prices of cars instead of the mileage for different makes
and models. A simple way to view this relationship is through a boxplot of the data split
by Manufacturer.

© CSIRO Australia, 2005 Course Materials and Exercises

Whirlwind Tour of R 19

60 —

50

40

Price (in $1,000)
o]
|
1T 1
m
[

30

20 .

|
1]
T ™
[
F-{T 4
FL_T 1+
F-C 104
R —
rCTh
Fe- T
[:IE}*
[
(]

[

10 éBQ— L

!
L

B I D I D I D I
R - — e e — =
EEEEE N R R e)
NEOS 2080l coNASESE>29539c0825<0=3=
S5 582 shs8 205255 2Cm > cTAE
N> pnE0Q wﬁleEmF:E = S8 =

T 7= < a2 08 O o9

o O =B = g

o) S 3

> o

<

()

=

Figure 6: Distribution of car prices by manufacturer sorted by the median.

Example 3: Images of Volcanic Activity

The volcano dataset is a digitized map of a New Zealand volcano compiled by Ross Ihaka.
The dataset is described in Appendix I and consists of a matrix with 87 rows and 61
columns. The topographic features of the dataset are plotted in Figure 7(a) using colours
that range from white through to red. Figure 7(b) is the result of setting a user defined
colour scheme.

Example 4: Coastline and Maps

Quite frequently you will need to produce a map for a project that you are working on.
These types of activities are typically done in a GIS system. However, R offers some very
useful functions for producing maps, given that you have the co-ordinates.

The following figure plots the main land and surrounding islands of Moreton Bay, in
South East Queensland Australia. The geographical locations were obtained using Coast-
line Extractor (Signell, 2005), a web based tool for extracting coastlines.

© CSIRO Australia, 2005 Course Materials and Exercises

20 Whirlwind Tour of R

image() plot() with user defined colours

60
60
|

50
50
|

40
40
|

30
col(volcano)
20 30
1 1

20

10
10
|

T T T T T
20 40 60 80 0 20 40 60 80

row(volcano)

(a) (b)

Figure 7: Image plots of volcanic activity on Mt Eden as produced by (a) image and (b)
using user defined colours.

T T T T T T
153.20 153.25 153.30 153.35 153.40 153.45

\
@Iand %
mn
X
N
o (
I
St Hel@lsland
g
~ Moreton Bay
b
Gre%lsland
n
Q q:
5 &
£ Wellington Point Myora Point
< °
'}
3 Empide Point Pe Polka Point
N leveland Pt
! g
wn
n
(,:; — Nth Stradijroke
1 . ieggo Island Islan:
Mainland o
g /e
©
’\' —
b

Longitude

Figure 8: Map of Moreton Bay and surrounding islands.

© CSIRO Australia, 2005 Course Materials and Exercises

R and the Tinn-R Editor 21

R and the Tinn-R Editor

Whatis R?

Software Facilities
R provides a suite of software facilities for

e Reading and manipulating data

e Computation

e Conducting statistical analyses and
e Displaying the results

Implementation of the S Language

R is an implementation of the S language, a language for manipulating objects. For more
details on the S language, readers are referred to Becker et al. (1988) and Venables & Ripley
(2002).

R: A Programming Environment

R is a programming environment for data analysis and graphics. The S Programming
book by Venables & Ripley (2000) provides a comprehensive overview of programming
principles using S and R. The language was initially written by Ross Thaka and Robert
Gentleman at the Department of Statistics at the University of Auckland. Since its birth,
a number of people have contributed to the package.

R: Platform for Development and Implementation of New Algorithms
R provides a platform for the development and implementation of new algorithms and
technology transfer. R can achieve this in three ways

e functions that make use of existing algorithms within R
e functions that call on external programs written in either C or Fortran

e packaged up pieces of code that have specific classes attached to handle printing,
summarising and the plotting data.

Obtaining R

Latest Copy
The latest copy of R (Version 2.1.0) can be downloaded from the CRAN (Comprehensive
R Archive Network) website: http://lib.stat.cmu.edu/R/CRANY/.

R Packages
R packages can also be downloaded from this site or alternatively, they can be obtained

© CSIRO Australia, 2005 Course Materials and Exercises

22 R and the Tinn-R Editor

via R once the package has been installed. A list of R packages accompanied by a brief
description can be found on the website itself.

R FAQ

In addition to these files, there is a manual and a list of frequently asked questions (FAQ)
that range from basic syntax questions and help on obtaining R and downloading and
installing packages to programming questions.

R Mailing Lists
Details of relevant mailing lists for R are available on http:/ /www.R-project.org/mail.html

e R-announce: announcements of major developments of the package
¢ R developments R-packages: announcements of new R packages
e R-help: main discussion list

e R-devel: discussions about the future of R

R Manuals

There are a number of R manuals in pdf format provided on the CRAN website. These
manuals consist of:

¢ R Installation and Administration: Comprehensive overview of how to install R
and its packages under different operating systems.

An Introduction to R: Provides an introduction to the language.

R Data Import/Export: Describes import and export facilities.

Writing R Extensions: Describes how you can create your own packages.

The R Reference Index: Contains printable versions all of the R help files for stan-
dard and recommended packages

R Reference Material

There are a number of introductory texts and more advanced reference material that can
help you with your journey through R. Below is a shortened list of key references. Those
printed in red correspond to reference material that specifically focuses on S-Plus but has
references to R or can be used as reference material for the R programming language.

e Introductory texts

— Introductory Statistics with R by Peter Dalgaard

© CSIRO Australia, 2005 Course Materials and Exercises

R and the Tinn-R Editor 23

- Linear Models with R by Julian Faraway

— Data Analysis and Graphics using R: An Example Based Approach by John
Maindonald and John Braun

— Modern Applied Statistics with S-Plus by Bill Venables and Brian Ripley

- Statistical Computing: An Introduction to Data Analysis using S-Plus by Michael
Crawley

e Programming
— S Programming by Bill Venables and Brian Ripley
e Advanced Topics
— Mixed-Effects Models in S and S-Plus by Jose Pinheiro and Douglas Bates

How Does R Work and How Do I Work with it?

Dedicated Folder

R works best if you have a dedicated folder for each separate project. This is referred
to as the working folder. The intension is to put all data files in the working folder or in
sub-folders of it. This makes R sessions more manageable and it avoids objects getting
messed up or mistakenly deleted.

Starting R
R can be started in the working folder by one of three methods:

1. Make an R shortcut which points to the folder (See Figure 9) and double-clicking on
the R icon.

2. Double-click on the .RData file in the folder. This approach assumes that you have
already created an R session.

3. Double-click any R shortcut and use setwd(dir)

In the windows version of R, the software can be started in either multiple or single win-
dows format. Single windows format looks and behaves similar to a unix environment.
Help and graphics screens are brought up as separate windows when they are called. In
a multiple environment, graphics and help windows are viewed within the R session.
This type of configuration can be set in the Rgui Configuration Editor by going to
Edit- > GUI Preferences . The 'look and feel” of your R session can also be changed
using this screen.

R Commands
Any commands issued in R are recorded in an .Rhistory file. In R, commands may be

© CSIRO Australia, 2005 Course Materials and Exercises

24 R and the Tinn-R Editor

RCourse Properties

General| Shartcut |E0mpatibilit_l,l Security

R RCourse

Target type: Application

Target location: bin

Target;

Start in: | [:4DatahSlides\RCourze |

Shortcut key: | More |

Bun: | Mormal windaw b |

Comment; | |

[Find Target...] [LChange lcon...] [Advanced...]

I 0K][Cancel]

Figure 9: The Properties dialog box for an R session.

recalled and reissued using the up- and down- arrow in an obvious way. Recalled com-
mands may be edited in a Windows familiar fashion with a few extras. Flawed commands
may be abandoned either by hitting the escape key (<Esc>) or (<Home Ctrl-K >) or
(<Home #>).

Copying and pasting from a script file can be achieved by using the standard shortcut
keys used by any Windows program: (<Ctrl-C = >,<Ctrl-V = >).

Copying and pasting from the history window is more suitable for recalling several com-
mands at once or multiple-line commands.

To ensure that a history of your commands are saved the savedhistory() function can
be used explicitly. To have access to what you did during the last session, a history of
previously used commands can be loaded using the loadhistory() function.

R Objects
R by default, creates its objects in memory and saves them in a single file called .RData .
R objects are automatically saved in this file.

Quitting R

To quit from R either type () in the R console or commands window or alternatively
just kill the window. You will be prompted whether you want to save your session. Most
times you will answer yes to this.

© CSIRO Australia, 2005 Course Materials and Exercises

R and the Tinn-R Editor 25

Installing and Loading R Packages

The installation and loading of R packages can be done within R by going up to the
Packages menu and clicking on Install package(s) from CRAN . A dialog box
will appear with a list of available packages to install. Select the package or packages
required and then click on OK Figure 10 shows a list of packages from the CRAN web-
site. In this example, the CODA package is selected to be installed. Alternatively, the
I nstall.packages() function can be used from the command line. (Note, in the latest ver-
sion of R (2.1.0), you may be prompted to select a download site.)

| R Console
_ il I [Gz T

[Previously saved workspace restored]

climatal -
clines

clue

cluster

trying URL “http://cran.r-project.org/bin/windows/contrih/2.0/PACKAGES"
Content type "text/plain; charset=iso-§859-1' length 25163 bytes
opened URL

crprsk downloaded 24Kb
cobs

CoCo
ColCodn

» lozalifa <- CRAN.packages()

+ install.packages(select.list(a[,1],,TRUE), .libPaths()[1], available=a, depen}
trying URL “http://cran.r-project.org/bin/windows/contrih/2.0/PACKAGES'

Content type 'text/plain: charset=iso-8839-1' length 25163 bytes

opened URL

domloaded 24K

colorspace
combinat
concor
concord

conf.design N)
covRobust trying URL “http://cran.r-project.org/bin/windows/contrih/a. D/Dnda_[l .9-2.zip
ramer Content. type ‘application/zip' length 265867 bytes
crossdes opened URL
cyclones dounloaded 255K
DaAG
date package 'coda' successfully unpacked and MDS sums checked
Davies
DEI w Delete dovnloaded files (y/N)? v
updating HTML package descriptions
>
i :
:)

Figure 10: List of packages available from CRAN. The CODA package is selected from
the Select dialog in Figure (a). Progress of the installation is summarised in the R console
in Figure (b) and downloaded files are deleted.

Once installed, these packages can be loaded into R. Go to the Packages menu and select
Load package . Select the package that is required and click on OK These packages
should be loaded into your current R session. Alternatively, the functions library()

or require() can be used to load installed packages into R. The require() function is
generally used inside functions as it provides a warning rather than an error (a feature of
the library() function) when a package does not exist.

Updating R packages can be achieved either through the menu or by using the function
update.packages() at the command line. If packages cannot be downloaded directly,
the package should be saved as a zip file locally on your computer and then installed
using the install.packages() function or using the options from the menu.

© CSIRO Australia, 2005 Course Materials and Exercises

26 R and the Tinn-R Editor

Customisation

Changes to the R console can be made through the Edit menu under GUI preferences
The dialog box shown in Figure 11 highlights the options available for changing how R
looks and feels.

Rgui Configuration Editor.

Single or multiple windows (7 WD) & 5DI

Pager style () multiple windows) single window

Fant [#] TrueType only size |1D vl style |nnrmal v|

Consale rows columng Iritial laft top
zet aptianz(width] on resize’ buffer bytes E5000 lines 2000

Pager rows columng
Graphics windows: initial left top EI

Conzole and Pager Colours

Backaground Qutput bext Lzer input Titles in pager
wheat3 M avajotahited ~ purple3 DarkOrchid3
wheatd I &vajoiadhited Lrpled [rark Qrchidd

[Apply l ’ Save] [a]s] [Cancel l

Figure 11: GUI preferences for changing the look and feel of the R console.

If global actions are required, actions that need to be taken every time R is used on a par-
ticular machine may be set in a file R Home/etc/Rprofile.site . Actions that happen
automatically every time this working folder is used can be set by defining a .First
function. For example,

> .First <- function() {
require(MASS)
require(lattice)
options(length=99999)
loadhistory()

© CSIRO Australia, 2005 Course Materials and Exercises

R and the Tinn-R Editor 27

To implement any actions at the end of a session in this working folder a .Last function
may be set up. For example,
.Last <- function()

savehistory("My.Rhistory")

The Rprofi | e. site file: An Example

An example of actions that you may want executed every time an R session begins is
shown in the following script:

When quitting using q(), save automatically without promp ting
g <- function(save="yes",status = 0, runLast = TRUE)

Internal(quit(save, status, runLast))

Things you might want to change
options(width = 80,papersize = "a4",editor = "notepad")

options(pager = “internal”)

to prefer Compiled HTML help
options(chmhelp = TRUE)

to prefer HTML help
options(html = TRUE)

to prefer Windows help

options(winhelp = TRUE)

Allows update.packages (for example) to proceed directly without
prompting for the CRAN site.
options(show.signif.stars = FALSE,length = 999999)

© CSIRO Australia, 2005 Course Materials and Exercises

28 R and the Tinn-R Editor

options("CRAN = http://cran.au.r-project.org/")
options(repos = c(CRAN = getOption("CRAN"),
CRANextra = "http://www.stats.ox.ac.uk/pub/RWin"))

Put working directory in the top border of the R console wind ow

utils:::setWindowTitle(paste("-",getwd()))

What Editor can I use with R

Tinn-R is a free editor (distributed under the GNU Public License) that runs under Win-
dows (9X/Me/2000/XP). Tinn stands for Tinn is Not Notepad and unlike notepad it allows
syntax highlighting of R (in *.R, *.r, *.Q or *.q files). When an R session is open, Tinn-R
includes an additional menu and toolbar and it allows the user to interact with R by sub-
mitting code in whole or in part.

The software is available from: http://www.sciviews.org/Tinn-R/

The Tinn-R Editor: A Demonstration

The Tinn-R editor provides editing capabilities superior to that of the Windows notepad
editor. A sample session is shown in Figure 12. The File , Edit , Search , View , Window
and Help menus are standard for most Windows applications. However, Tinn-R offers a
few extra features that make editing R scripts easier.

e The Format menu item helps with formatting and editing a file. In particular, it
helps with bracket matching, a useful feature when writing programs.

e The Project menu allows you to set up a project containing more than one piece
of code. This can be useful if you need to separate your code into components rather
than placing each component in the one file.

e The Options menu allows you to change the look of the Tinn-R editor and how it
deals with syntax highlighting.

e The Tools menu allows you to define macros and record sessions
e The Rmenu is useful for interacting with an R session when one is made available.

It is useful before writing a script for the first time within Tinn-R to edit the options.
Figure 13 displays the list of application options available within the Tinn-R editor. A

© CSIRO Australia, 2005 Course Materials and Exercises

R and the Tinn-R Editor 29

& Tinn R - [D:\Data\Slides\RCourse\02 An Introduction to R.R]
&k Fle Edt Fornat Project Search Options Tools R Wiew Window Hefp -8 x

D& | g L @R B ic)
Bs# =g | doradddiaax® 2

I
L¥
Z # Session 02: An Introduction to R and the Tinn-R Editor
3 # Authors: Fetra Kuhnert & Bill Vensbles
44 CSIRO Mathematical and Information Sciences
£ # Date: 2 February 2005
5

EE R

4
e

9 # Slide 10->

10 # Customisation

11 # .First function

1z .Firstc <- function{) {
13 require (HA33)

14 require (lactice)

15 options | lengrh=09595)
16 loadhistory()

I3 i

13 # .Last function

20 .last - function() savehistory("My.Rhistory")

z1l

22 # Rprofile.site

23 q <- function(save="yes" status = 0, runlast = TRUE)

24 .Internal (quit (Save, Status, runlast])

25

26 # Things you might want o change

27 # options (width=80,papersize="24", editor="notepad"}

z8 # options(pager="internal')

z3

30 # to prefer Compiled HTML help

31 # options (chmhelp=TRUE)

az

33 # to prefer HTML help 2
e T 3
02 4n Intioduiction to R.A
Ln 1/77: Col 1 Insert Filesie:ZKE [Tinn-R HotKeys Inactived

Figure 12: The Tinn-R Editor

useful option to select is Active Line Highlighting. This helps when sending scripts line by
line.

Depending on the file being edited, Tinn-R offers syntax highlighting. See Figure 14 for
an example. This is useful for writing scripts in R as it highlights reserved words and
comments.

In Figure 14, a selection of the script is highlighted and then submitted to R from within
the Tinn-R editor. Text can be submitted by simple highlighting, line-by-line or by send-
ing the entire file.

Hotkeys may be set up in Tinn-R for the fast execution of commands. Figure 15 illustrates
how a hotkey can be set up for use with R. The Alt+S key has been reserved for sending
parts of highlighted scripts.

The R Language: Basic Syntax

It is important to learn some basic syntax of the R programming language before launch-
ing in to more sophisticated functions, graphics and modelling. Below is a compilation of
some of the basic features of R that will get you going and help you to understand the R
language.

R prompt
The default R prompt is the greater-than sign (>)

© CSIRO Australia, 2005 Course Materials and Exercises

30

R and the Tinn-R Editor

Application Options

Misc

IB 3. AL List Count
IB 3. Search List Count

[] Undo After Save

[] WWord Wrap
Appearance Like WirkP

Starting Comment

Ending Comment

R Resources Visibles

Active Ling Highlighted J

Clear MRU

|| Remember Search List
|| Minimize Tinn After Last File is Clozed

|| Remawe Extentions for Save As

T;::_ Rgui | |C:%Program FilesWR w2007 bintR gui exe

Ok

Cancel |

Figure 13: Options within Tinn-R

R:cd @ He Edi Fomol prowct Seach Options Ioos B Wew Window Hep

Versi @@ =h - AN ® @

R is ECA IR TAEY T Th R

Tou I STF options (hemd-TRTE) &
-

i io AR* co prozer mintows neay

Ri2q 5% cptions rnnerperau)

citat e
s s st

Type {40 opcions (CRAN-heups/ /mizeor . asenet - ed. au/pub/ CRAN)

a
Type | 42 SEHHEEEEHY
43 # Slide 24->
[Prevy 44 # Examples of the use of Distributions

Normal distribution

trying S7 ### generating a mixture
Contedl 58 compliix <- ifelse{runif{S000) < 0.25, rnorm(S000, 3, 0.5), raorm(S000)]
opened 59 hist (compix, freq=F)

dovnld 60 lines (density(complix,bu=0.4) ,col="red")

a1

packad ¢,

65 # Use of distributions

64 # 2-tailed p-value for Normal distribution

65 1-pnorm(1.96)

66 qnorm(0.975)

Delet:

upaat
> 100
+ insj@
eryind o2an muoditontaRA |

00 05 10 15 20 25 30

180 200

Contely sspr7: Col 3 Insert Fleszs:2KE Tin-R Hotkeys Inactived

dovnloaded 24Kp

> norm.valsi <- rnorm(n=10)
> norm.valsz <- rnorm(n=100)

> norm.valss <- rnorm(n=1000)

> norm.valed <- rnorm(n=10000)

> # set up plotting region

> par (ufrow=c(2,2))

> hist(norm.valsl,main="10 RVs")

> hist (norm.valsz,main="100 RVs")

> hist (norm.vals3,main="1000 RVs")
> hist (norm.vals4, main="10000 RVs")
>

100

/1. R Graphics: Device 2 (ACTIVE)

EEEECIEER E EIEIEEE] o]

10RVs 100 RVs
[
§ R
—— T
2 Bl 0 K 2 1 0 1 2 3 4
norm vals1 norm.vals2
1000 RVs 10000 RVs
]
g
§8
£

H
S
@
S
E

& TR

&)% [szen

Figure 14: Example Tinn-R session. A selection of text is highlighted, sent to the R console

and run to produce a series of plots.

© CSIRO Australia, 2005

Course Materials and Exercises

R and the Tinn-R Editor 31

Tinn-R Hotkeys E|
GetHatk ey tethod TextTaHatk ey Method
Ctrl Shift Kew S = ey |[Chrledslt+Mum 1
w| Al Win
Add Add | dvaiable? |
Tinn-R Functional Hotk.eps: Agzigned Hotkeps:
Send: file Alt+3

Send: zelection

Send: al

Send: line

Send: lines to end page

Editar: line below and top

R: print content of zelected wariable
R: list narnes of selected variable
R list all objects

R cloze all graphic devices

R help seleced ward

Femove | Clear all |

Option
Inactived ® Actived w

Figure 15: Setting hot keys in Tinn-R.

© CSIRO Australia, 2005 Course Materials and Exercises

32 R and the Tinn-R Editor

> 2+ 4
[1] 8

Continuation prompt
If a line is not syntactically complete, a continuation prompt (4) appears

> 2 %
+ 4
[1] 8

Assignment Operator

The assignment operator is the left arrow (< —) and assigns the value of the object on the
right to the object on the left

> value <- 2 * 4

The contents of the object value can be viewed by typing value at the R prompt

> value

[1] 8

Last Expression

If you have forgotten to save your last expression, this can be retrieved through an inter-
nal object .Last.value

> 2 x 4

[1] 8

> value <- .Last.value

> value

[1] 8

Removing Objects

The functions rm() or remove() are used to remove objects from the working directory
> rm(value)

> value

Error: Object 'value’ not found

Legal R Names
Names for R objects can be any combination of letters, numbers and periods (.) but they
must not start with a number. R is also case sensitive so

© CSIRO Australia, 2005 Course Materials and Exercises

R and the Tinn-R Editor 33

> value
[1] 8

is different from

> Value

Error: Object 'Value’ not found

Finding Objects

R looks for objects in a sequence of places known as the search path. The search path
is a sequence of environments beginning with the Global Environment. You can inspect it
at any time (and you should) by the search() function (or from the Misc menu). The
attach() function allows copies of objects to be placed on the search path as individual
components. The detach() function removes items from the search path.

Looking at the Search Path: An Example

> attach(Cars93)

> search()

[1] ".GlobalEnv" "Cars93" "package:methods”
[4] "package:graphics" "package:utils" "package:RODBC"

[7] "package:stats" "package:MASS" "Autoloads”

[10] "package:base”
> objects(2)

[1] "AirBags" "Cylinders" "DriveTrain"
[4] "EngineSize" "Fuel.tank.capacity” "Horsepower"
[19] "Price" "Rear.seat.room” "Rev.per.mile”

[22] "RPM" “Turn.circle" "Type"
[25] "Weight" "Wheelbase" "Width"
> names(Cars93)

[1] "Manufacturer” "Model" "Type"

[4] "Min.Price" "Price" "Max.Price"
[7] "MPG.city" "MPG.highway" "AirBags"

© CSIRO Australia, 2005 Course Materials and Exercises

34 R and the Tinn-R Editor

[22] "Turn.circle" "Rear.seat.room" "Luggage.room"

[25] "Weight" "Origin" "Make"

> find(Cars93)
[1] "package:MASS"
Assignments to Objects

Avoid using the names of built-in functions as object names. If you mistakenly assign an
object or value to a built-in function and it is passed to another function you may get a
warning but not always. . . things may go wrong.

R has a number of built-in functions. Some examples include ¢, T, F, t . An easy way to
avoid assigning values/objects to built-in functions is to check the contents of the object
you wish to use. This also stops you from overwriting the contents of a previously saved
object.

> Value

Object with no Error: Object "Value" not found

value assigned

> value # Object with a

[1] 8 # a value assigned

> T # Built in R Value
[1] TRUE

>t # Built in R

function (x) # function

UseMethod("t")

<environment: namespace:base>

Spaces

R will ignore extra spaces between object names and operators
> value <- 2 * 4

[1] 8

© CSIRO Australia, 2005 Course Materials and Exercises

R and the Tinn-R Editor 35

Spaces cannot be placed between the < and — in the assignment operator

> value < -2 x 4
[1] FALSE

Be careful when placing spaces in character strings

> value <- "Hello World"

is different to

> value <- 'Hello World’

Getting Help

To get help in R on a specific function or an object or alternatively an operator, one of the
following commands can be issued:

> ?function

> help(function)

or click on the Help menu within R.

To get help on a specific topic, either one of the following will suffice

> help.search("topic")

or click on the Help menu within R

The R Language: Data Types

There are four atomic data types in R.

e Numeric

> value <- 605
> value
[1] 605

e Character
> string <- "Hello World"

> string

[1] "Hello World"

© CSIRO Australia, 2005 Course Materials and Exercises

36 R and the Tinn-R Editor

e Logical

> 2 < 4
[1] TRUE

e Complex number

> cn <- 2 + 3i
> cnh
[1] 2+3i

The attribute of an object becomes important when manipulating objects. All objects have
two attributes, the mode and their length

The R function mode can be used to determine the mode of each object, while the function
length will help to determine each object’s length.

> mode(value)

[1] "numeric"

> |ength(value)

1] 1

> mode(string)
[1] "character”
> length(string)
[1] 1

> mode(2<4)
[1] "logical"

> mode(cn)
[1] "complex"
> length(cn)
1] 1

© CSIRO Australia, 2005 Course Materials and Exercises

R and the Tinn-R Editor 37

> mode(sin)
[1] "function”

NULL objects are empty objects with no assigned mode. They have a length of zero.

> names(value)
[1] NULL

The R Language: Missing, Indefinite and Infinite Values

In many practical examples, some of the data elements will not be known and will there-
fore be assigned a missing value. The code for missing values in R is NA This indicates
that the value or element of the object is unknown. Any operation on an NAresults in an
NA

Theis.na() function can be used to check for missing values in an object.

> value <- ¢(3,6,23,NA)
> is.na(value)
[1] FALSE FALSE FALSE TRUE

> any(is.na(value))
[1] TRUE

> na.omit(value)
[1] 3 6 23

> attr(,"na.action")
[1] 4

> attr(,"class")

[1] "omit"
Indefinite and Infinite values (Inf ,-Inf and NaN) can also be tested using the is.finite ,
is.infinite ,is.nan and is.number functions in a similar way as shown above.

© CSIRO Australia, 2005 Course Materials and Exercises

38 R and the Tinn-R Editor

These values come about usually from a division by zero or taking the log of zero.

> valuel <- 5/0
> value2 <- log(0)

> value3 <- 0/0

> cat("valuel = ",valuel,” value2 = " value2,
" value3 = ",value3,"\n")
valuel = Inf value2 = -Inf value3 = NaN

Arithmetic and Logical Operators
The last few sections used a variety of arithmetic and logical operators to evaluate expres-
sions. A list of arithmetic and logical operators are shown in Tables 1 and 2 respectively.

Table 1: Arithmetic Operators

Operator Description Example
+ Addition > 2+5
[1] 7
— Subtraction > 2-5
[1] -3
X Multiplication =~ >2+%5
[1] 10
/ Division > 2/5
[1] 0.4
A Exponentiation > 2A 5
[1] 32
%/% Integer Divide > 5%/%2
[1] 2
%% Modulo > 5%%?2
1] 1

Distributions and Simulation

There are a number of distributions available within R for simulating data, finding quan-
tiles, probabilities and density functions. The complete list of distributions are displayed
in Table 3. Other less common distributions, which are found in developed packages (not
included with the original distribution) are also displayed in this table.

© CSIRO Australia, 2005 Course Materials and Exercises

R and the Tinn-R Editor 39

Table 2: Logical Operators

Operator Description Example

== Equals > valuel

[1] 3 6 23

> valuel==23

[1] FALSE FALSE TRUE
= Not Equals > valuel != 23

[1] TRUE TRUE FALSE
< Less Than > valuel < 6

[1] TRUE FALSE FALSE
> Greater Than > valuel > 6

[1] FALSE FALSE TRUE
<= Less Than or Equal To > valuel <= 6

[1] TRUE TRUE FALSE
>= Greater Than or Equal To > valuel >= 6

[1] FALSE FALSE TRUE
& Elementwise And > value2

[1] 1 2 3

| Elementwise Or

&& Control And

| Control Or
Tor Elementwise Exclusive Or

! Logical Negation

> valuel==6 & value2 <= 2
[1] FALSE TRUE FALSE

> valuel==6 | value2 <= 2
[1] TRUE TRUE FALSE

> valuel[l] <- NA

> is.na(valuel) && value2 ==

[1] TRUE

> is.na(valuel) || value2 ==

[1] TRUE

> xor(is.na(valuel), value2 == 2)

[1] TRUE TRUE FALSE
> lis.na(valuel)
[1] FALSE TRUE TRUE

© CSIRO Australia, 2005

Course Materials and Exercises

R and the Tinn-R Editor

Table 3: Probability Distributions in R

R Function Distribution Parameters Package
beta Beta shapel,shape2 stats

binom Binomial size,prob stats

cauchy Cauchy location,scale stats

chisq (non-central) Chi-squared df,ncp stats
dirichlet Dirichlet alpha MCMCpack
exp Exponential rate stats

f F df1,df2 stats
gamma Gamma shape,rate stats

geom Geometric prob stats

gev Generalized Extreme Value xi,mu,sigma evir

gpd Generalized Pareto xi,mu,beta evir

hyper Hypergeometric m,n, k stats
invgamma Inverse Gamma shape,rate MCMCpack
iwish Inverse Wishart v,S MCMCpack
logis Logistic location,scale stats

[norm Log Normal meanlog,sdlog stats
multinom Multinomial size,prob stats
mvnorm Multivariate Normal mean,sigma mvtnorm
mvt Multivariate-t sigma,df mvtnorm
nbinom Negative Binomial size,prob stats

norm Normal mean,sd stats

pois Poisson lambda stats
signrank Wilcoxon Signed Rank Statistic n stats

t Student-t df stats

unif Uniform min,max stats

weibull Weibull shape,scale stats

wilcox Wilcoxon Rank Sum Statistic m,n stats

wish Wishart v,S MCMCpack

© CSIRO Australia, 2005

Course Materials and Exercises

R and the Tinn-R Editor 41

In R, each distribution has a name prefixed by a letter indicating whether a probability,
quantile, density function or random value is required. The prefixes available are shown
in more detail below:

p: probabilities (distribution functions)

g: quantiles (percentage points)

d: density functions (probability for discrete RVs)
e r: random (or simulated) values
The following example illustrates how we can simulate data from a Normal distribution
using the rnorm function.
> norm.valsl <- rnorm(n=10)
> norm.vals2 <- rnorm(n=100)
> norm.vals3 <- rnorm(n=1000)
> norm.vals4 <- rnorm(n=10000)

The first object, norm.valsl generates 10 random values from a Normal distribution
with a default mean of 0 and default standard deviation of 1. If values were required
from a Normal distribution with a different mean and/or standard deviation then these
arguments would need to be explicitly specified. The second, third and fourth objects
generate random values from the same distribution with the same mean and standard
deviations but with varying sample sizes.

The result of the simulated data is shown graphically in Figure 16 using the following R
code:
set up plotting region

par(mfrow=c(2,2))

* VvV o F

produce plots

\Y

hist(horm.vals1l,main="10 RVs")
> hist(norm.vals2,main="100 RVs")
> hist(norm.vals3,main="1000 RVs")
> hist(norm.vals4,main="10000 RVs")

As the sample sizes increase the shape of the distribution looks more like a Normal distri-
bution. It is difficult to tell if the object norm.valsl has been generated from a Normal
distribution with a mean of zero and a standard deviation of zero. This can be confirmed
by looking at summary statistics from this object as the mean and standard deviation are
not close to 0 or 1 respectively.

© CSIRO Australia, 2005 Course Materials and Exercises

42

R and the Tinn-R Editor

10 RVs

Frequency
2
l

o
o -
I T T T T T 1
-1.0 -05 00 05 10 15 20
norm.valsl
1000 RVs
o
8 _ g
N
o —
3
— —

Frequency
100
l

50

norm.vals3

Frequency

Frequency

15 20

10

1000 1500

500

100 RVs

I — —
I T T T T 1
-2 -1 0 1 2 3
norm.vals2
10000 RVs
I T T T 1
-4 -2 0 2 4
norm.vals4

Figure 16: Histograms of simulated data from Normal distributions with a mean of 0 and

standard deviation of 1.

© CSIRO Australia, 2005

Course Materials and Exercises

R and the Tinn-R Editor 43

> c(mean(norm.valsl),sd(norm.valsl))
[1] 0.2461831 0.7978427

The interpretation of the Central Limit theorem is appropriate here for this example. The
theorem states that as the sample size n taken from a population with a mean ; and vari-
ance o approaches infinity, then the statistics from the sampled distribution will converge
to the theoretical distribution of interest.

To illustrate this, if we calculate the mean and standard deviation of norm.vals4 , the
object where we generated 10,000 random values from a N(0, 1) distribution, we find that
the summary statistics are close to the actual values.

> c(mean(norm.vals4),sd(norm.vals4))

[1] 0.004500385 1.013574485

For larger simulations, these are closer again,

> norm.vals5 <- rnorm(n=1000000)
> c(mean(norm.vals5),sd(norm.valsb))

[1] 0.0004690608 0.9994011738

We can also overlay a density on top of a histogram summarising the data. This can be
useful to display the features in the histogram and to identify intersection points where
components in the mixture distribution meet. We illustrate this through the generation
of a mixture of two Normal distributions using the following piece of R code. Figure 17
displays the two-component mixture with the density overlayed.

Generating a two component mixture

> compMix <- ifelse(runif(5000) < 0.25,rnorm(5000,3,0.5) ,rnorm(5000))
Plotting

> hist(comp,freq=F)

> lines(density(comp,bw=0.4),col="red")

R can also be used to evaluate probabilities or quantiles from distributions. This is a useful
mechanism for determining p-values instead of searching through statistical tables and
they can be easily achieved using the p(dist) and q(dist) functions. Some examples are
shown below.

2-tailed p-value for Normal distribution
> 1-pnorm(1.96)
[1] 0.0249979

© CSIRO Australia, 2005 Course Materials and Exercises

44 R and the Tinn-R Editor

Histogram of compMix

0.30
|

] 7N

0.25

T
<
> \

0.10
|

0.05
|

0.00
L

compMix

Figure 17: Histograms of two-component mixture model generated from Normal distrib-
utions. The density is overlayed in red.

> gnorm(0.975) # quantile
[1] 1.959964

2-tailed p-value for t distribution
> 2*pt(-2.43,df=13)

[1] 0.0303309

> qt(0.025,df=13)

[1] -2.160369 # quantile

#p-value from a chi-squared distribution with 1 degree of fr eedom
> 1-pchisq(5.1,1)

[1] 0.02392584

> (chisq(0.975,1)

[1] 5.023886 # quantile

© CSIRO Australia, 2005 Course Materials and Exercises

R Objects 45

R Objects

Data Objects in R

The four most frequently used types of data objects in R are vectors, matrices, data frames
and lists.

A vector represents a set of elements of the same mode whether they are logical, numeric
(integer or double), complex, character or lists.

A matrix is a set of elements appearing in rows and columns where the elements are of the
same mode whether they are logical, numeric (integer or double), complex or character.

A data frame is similar to a matrix object but the columns can be of different modes.

A list is a generalisation of a vector and represents a collection of data objects.

Creating Vectors

¢ Function

The simplest way to create a vector is through the concatenation function, c. This function
binds elements together, whether they are of character form, numeric or logical. Some
examples of the use of the concatenation operator are shown in the following script.

> value.num <- ¢(3,4,2,6,20)

> value.char <- c("koala","kangaroo”,"echidna")

> value.logical.1 <- c(F,F,T,T)

or

> value.logical.2 <- c(FALSE,FALSE,TRUE,TRUE)

The latter two examples require some explanation. For logical vectors, TRUEand FALSE
are logical values and T and F are variables with those values. This is the opposite for
S-PLUS. Although they have a different structure, logical vectors can be created using
either value.

r ep and seq Functions

The rep function replicates elements of vectors. For example,
> value <- rep(5,6)

> value

[1] 5 5 5 5 5 5

© CSIRO Australia, 2005 Course Materials and Exercises

46 R Objects

replicates the number 5, six times to create a vector called value, the contents of which are
displayed.

The seq function creates a regular sequence of values to form a vector. The following
script shows some simple examples of creating vectors using this function.

> seq(from=2,t0=10,by=2)

1] 2 4 6 8 10

> seq(from=2,t0=10,length=5)

1] 2 4 6 8 10

> 1.5

1] 1 2 3 4 5

> seqg(along=value)

1] 2 2 3 4 5 6

c, rep and seq Functions
As well as using each of these functions individually to create a vector, the functions can
be used in combination. For example,

> value <- c¢(1,3,4,rep(3,4),seq(from=1,t0=6,by=2))
> value

[1] 1343333135

uses the rep and seq functions inside the concatenation function to create the vector
value .

It is important to remember that elements of a vector are expected to be of the same mode.
So an expression

> c¢(1:3,"a","b","c")
will produce an error message.

scan Function

The scan function is used to enter in data at the terminal. This is useful for small datasets
but tiresome for entering in large datasets. A more comprehensive summary of how
data is read from files will be discussed in the session on ‘importing and exporting’. An
example of reading data in from the terminal is shown below.

> value <- scan()
1. 3 4 2 6 20

© CSIRO Australia, 2005 Course Materials and Exercises

R Objects 47

6:
> value
1] 3 4 2 6 20

Basic Computation with Numerical Vectors

Computation with vectors is achieved using an element-by-element operation. This is
useful when writing code because it avoids ‘for loops’. However, care must be taken
when doing arithmetic with vectors, especially when one vector is shorter than another.
In the latter circumstance, short vectors are recycled. This could lead to problems if ‘recy-
cling” was not meant to happen. An example is shown below.

> X <- runif(10)

> X

[1] 0.3565455 0.8021543 0.6338499 0.9511269

[5] 0.9741948 0.1371202 0.2457823 0.7773790

[9] 0.2524180 0.5636271

>y < 2xx + 1 # recycling short vectors

>y

[1] 1.713091 2.604309 2.267700 2.902254 2.948390

[6] 1.274240 1.491565 2.554758 1.504836 2.127254

Some functions take vectors of values and produce results of the same length. Table 4 lists
a number of functions that behave this way.

Other functions return a single value when applied to a vector. Some of these functions
are summarised in Table 5.

The following script makes use of some of this functionality.

> z <- (x-mean(x))/sd(x) # see also ’'scale’

> z

[1] -0.69326707 0.75794573 0.20982940 1.24310440
[5] 1.31822981 -1.40786896 -1.05398941 0.67726018
[9] -1.03237897 -0.01886511

> mean(z)

[1] -1.488393e-16

> sd(z)

© CSIRO Australia, 2005 Course Materials and Exercises

48

R Objects

Table 4: Functions that produce results of the same length.

Function

Description

cos, sin, tan

acos, asin, atan
cosh, sinh, tanh
acosh, asinh, atanh

log
log10
exp
round
abs

ceiling, floor, trunc

gamma
lgamma
sqrt

Cosine, Sine, Tangent

Inverse functions

Hyperbolic functions

Inverse hyperbolic functions
Logarithm (any base, default is natural logarithm)
Logarithm (base 10)

Exponential (e raised to a power)
Rounding

Absolute value

Truncating to integer values
Gamma function

Log of gamma function

Square root

Table 5: Functions that produce a single result.
Function Description

sum
mean

Sum elements of a vector
arithmetic mean

max, min Maximum and minimum

prod
sd

var

Product of elements of a vector
standard deviation
variance

median 50th percentile

© CSIRO Australia, 2005

Course Materials and Exercises

R Objects 49

1] 1

Laboratory Exercise: Try the first three examples from Lab 2

Creating Matrices

di mand mat ri X functions

The dim function can be used to convert a vector to a matrix

> value <- rnorm(6)
> dim(value) <- c(2,3)
> value

[1] [.2] [.3]
[1,] 0.7093460 -0.8643547 -0.1093764
[2,] -0.3461981 -1.7348805 1.8176161

This piece of script will fill the columns of the matrix. To convert back to a vector we
simply use the dim function again.

> dim(value) <- NULL

Alternatively we can use the matrix function to convert a vector to a matrix

> matrix(value,2,3)

[1] [.2] [,3]
[1,] 0.7093460 -0.8643547 -0.1093764
[2,] -0.3461981 -1.7348805 1.8176161

If we want to fill by rows instead then we can use the following script

> matrix(value,2,3,byrow=T)

[.1] [.2] [.3]
[1,] 0.709346 -0.3461981 -0.8643547
[2,] -1.734881 -0.1093764 1.8176161
r bi nd and cbi nd Functions

To bind a row onto an already existing matrix, the rbind function can be used

© CSIRO Australia, 2005 Course Materials and Exercises

50 R Objects

> value <- matrix(rnorm(6),2,3,byrow=T)
> value2 <- rbind(value,c(1,1,2))
> value2

[1] [.2] [.3]
[1,] 0.5037181 0.2142138 0.3245778
[2,] -0.3206511 -0.4632307 0.2654400
[3,] 1.0000000 1.0000000 2.0000000

To bind a column onto an already existing matrix, the cbind function can be used

> value3 <- chind(value2,c(1,1,2))

[.1] [.2] [.3] [4]
[1,] 0.5037181 0.2142138 0.3245778 1
[2,] -0.3206511 -0.4632307 0.2654400 1
[3,] 1.0000000 1.0000000 2.0000000 2

dat a. f r ane Function

The function data.frame converts a matrix or collection of vectors into a data frame

> value3 <- data.frame(value3)
> value3
X1 X2 X3 X4
1 0.5037181 0.2142138 0.3245778 1
2 -0.3206511 -0.4632307 0.2654400 1
3 1.0000000 1.0000000 2.0000000 2

Another example joins two columns of data together.

> value4 <- data.frame(rnorm(3),runif(3))
> valued
rnorm.3. runif.3.
1 -0.6786953 0.8105632
2 -1.4916136 0.6675202
3 0.4686428 0.6593426

© CSIRO Australia, 2005

Course Materials and Exercises

R Objects 51

Row and column names are already assigned to a data frame but they may be changed
using the names and row.names functions. To view the row and column names of a
data frame:

> names(value3)

[1] IIXlII IIX2II ||X3|| IIX4II

> row.names(value3)

[aj "1 2" "3"

Alternative labels can be assigned by doing the following

> names(value3) <- c("C1","C2","C3","C4")
> row.names(value3) <- c("R1","R2","R3")

Names can also be specified within the data.frame function itself.

> data.frame(C1=rnorm(3),C2=runif(3),row.names=c("R1 ""R2","R3")
Ci Cc2

R1 -0.2177390 0.8652764

R2 0.4142899 0.2224165

R3 1.8229383 0.5382999

Manipulating Data: An Example

The iris dataset (iris3) is a three dimensional dataset described in Appendix I. One
dimension is represented for each species: Setosa, Versicolor and Virginica. Each species
has the sepal lengths and widths, and petal lengths and widths recorded.

To make this dataset more manageable, we can convert the three-dimensional array into
a d-dimensional data frame.

To begin with, we examine the names of the three-dimensional array.

> dimnames(iris3)

[[1]]
NULL

[[21]

© CSIRO Australia, 2005 Course Materials and Exercises

52 R Objects

[1] "Sepal L." "Sepal W." "Petal L." "Petal W."

[(31]

[1] "Setosa" "Versicolor" "Virginica"

We see that the first dimension has not been given any names. This dimension corre-
sponds to the row names of the dataset for each species. The second dimension cor-
responds to the explanatory variables collected for each species. The third dimension
corresponds to the species.

Before coercing this three dimensional array into a two dimensional data frame, we first
store the species name into a vector.

> Snames <- dimnames(iris3)[[3]]

We now convert the three dimensional array into a 150 x 3 matrix and coerce the matrix
into a data frame.

> iris.df <- rbind(iris3[,,1],iris3[,,2],iris3[,,3])
> jris.df <- as.data.frame(iris.df)

Now we check the column names of the data frame.

> names(iris.df)

[1] "Sepal L." "Sepal W." "Petal L." "Petal W."

Using the Snames vector, we create a species factor and bind it to the columns of iris.df

> iris.df$Species <- factor(rep(Snames,rep(50,3)))

To check that we have created the data frame correctly, we print out the first five rows of
the data frame.

> iris.df[1:5,]

Sepal L. Sepal W. Petal L. Petal W. Species
1 5.1 3.5 1.4 0.2 Setosa
2 4.9 3.0 1.4 0.2 Setosa
3 4.7 3.2 1.3 0.2 Setosa
4 4.6 3.1 1.5 0.2 Setosa
5 5.0 3.6 1.4 0.2 Setosa

© CSIRO Australia, 2005 Course Materials and Exercises

R Objects 53

A pairwise plot of the data (Figure 18) can be produced using the pairs function in the
following way.
> pairs(iris.df[1:4],main = "Anderson’s Iris Data",

pch = 21,bg = c("red","green3","blue")[unclass(iris$Spe cies)])

Anderson’s Iris Data

20 25 3.0 35 40 05 10 15 20 25

n
3
o
—
b
n
'.
° %
oS
&
3
T T IJ.};I..I

I
°
3
°
% o
°
°
o®
oo
o®
°
°
© cog 00
00
® o

20 25 30 35 40
i
e
o ¢ 8

%o
° o
L} °
°
n
D
o)
Q
'l
o
f 7
e
) o
o' &
)
% ©
°
.‘.

Petal L.

%
:&‘5&

S e &t 0®gtes’ &b o
N e {o X fo‘
0 ° 8 o.. i o 8 oo j.:'.
ol o ?:-""" SR o Petal W.
° -t ° gueltgT”
T T T T T T T T T T 1
4.5 55 6.5 75 1 2 3 4 5 6 7

Figure 18: Pairwise plot of the iris data frame

Accessing Elements of a Vector or Matrix

Accessing elements is achieved through a process called indexing. Indexing may be done
by

e a vector of positive integers: to indicate inclusion

© CSIRO Australia, 2005 Course Materials and Exercises

54 R Objects

e a vector of negative integers: to indicate exclusion
e a vector of logical values: to indicate which are in and which are out
e a vector of names: if the object has a names attribute

For the latter, if a zero index occurs on the right, no element is selected. If a zero index
occurs on the left, no assignment is made. An empty index position stands for the lot!

Indexing Vectors

The first example involves producing a random sample of values between one and five,
twenty times and determining which elements are equal to 1.

> x <- sample(1:5, 20, rep=T)

> X

11 34112142115311124553

> X ==

[1] FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE

[10] TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE

[19] FALSE FALSE

> ones <- (x == 1) # parentheses unnecessary

We now want to replace the ones appearing in the sample with zeros and store the values
greater than 1 into an object called y.

> Xx[ones] <- 0

> X

1] 34002042005300024553

> others <- (x > 1) # parentheses unnecessary

> y <- x[others]

>y

[1] 342425324553

The following command queries the X vector and reports the position of each element
that is greater than 1.

> which(x > 1)

1] 1 2 5 7 8 11 12 16 17 18 19 20

Indexing Data Frames

© CSIRO Australia, 2005 Course Materials and Exercises

R Objects 55

Data frames can be indexed by either row or column using a specific name (that corre-
sponds to either the row or column) or a number. Some examples of indexing are shown
below.

Indexing by column:

> value3
C1 C2 C3 C4

R1 0.5037181 0.2142138 0.3245778 1
R2 -0.3206511 -0.4632307 0.2654400 1
R3 1.0000000 1.0000000 2.0000000 2
> value3[, "C1"] <- O
> value3

C1l C2 C3 C4
R1 0 0.2142138 0.3245778 1
R2 0 -0.4632307 0.2654400 1
R3 0 1.0000000 2.0000000 2

Indexing by row:

> value3['R1",] <- O
> value3

C1l Cc2 C3 C4
R1 O 0.0000000 0.0000000 O
R2 0 -0.4632307 0.2654400 1
R3 0 1.0000000 2.0000000 2
> value3[] <- 1:12
> value3

Cl C2 C3 C(C4
R11 4 7 10
R2 2 5 8 11
R33 6 9 12

To access the first two rows of the matrix/data frame:

© CSIRO Australia, 2005 Course Materials and Exercises

56 R Objects

> value3[1:2,]

Cl C2 C3 C4
R1 1 4 7 10
R2 2 5 811

To access the first two columns of the matrix/data frame:

> value3|[,1:2]

Cl C2
Rl 1 4
R2 2 5
R3 3 6

To access elements with a value greater than five we can use some subsetting commands
and logical operators to produce the desired result.

> as.vector(value3[value3>5])
[1] 6 7 8 9 10 11 12

Lists

Creating Lists

Lists can be created using the list function. Like data frames, they can incorporate a
mixture of modes into the one list and each component can be of a different length or
size. For example, the following is an example of how we might create a list from scratch.

> L1 <- list(x = sample(1:5, 20, rep=T),

y = rep(letters[1:5], 4), z = rpois(20, 1))
> L1
$x

11 21145345533343233231

$y

[1] "a" "b" "c" "d" "e" "a" "b" "c" "d" "e" "a" "b"

© CSIRO Australia, 2005 Course Materials and Exercises

R Objects 57

[13] "c" "d" "e" "a" "b" "c" "d" "e"

$z
[1113003131012203110120

There are a number of ways of accessing the first component of a list. We can either access
it through the name of that component (if names are assigned) or by using a number
corresponding to the position the component corresponds to. The former approach can
be performed using subsetting ([[]]) or alternatively, by the extraction operator ($). Here
are a few examples:

> L1[["x]
[1]21145345533343233231
> L1$x
[1]21145345533343233231
> L1[[1]]
[1]21145345533343233231

To extract a sublist, we use single brackets. The following example extracts the first com-
ponent only.

> L1[1]
$x
[1]21145345533343233231

Working with Lists

The length of a list is equal to the number of components in that list. So in the previous
example, the number of components in L1 equals 3. We confirm this result using the
following line of code:

> length(L1)
[1] 3

To determine the names assigned to a list, the names function can be used. Names of lists
can also be altered in a similar way to that shown for data frames.

> names(L1l) <- c("ltem1","ltem2","ltem3")

Indexing lists can be achieved in a similar way to how data frames are indexed:

© CSIRO Australia, 2005 Course Materials and Exercises

58 R Objects

> L1$ltem1[L1$Item1>2]
[1] 4 3 4 5 3 3 3 5 3 3 5

Joining two lists can be achieved either using the concatenation function or the append
function. The following two scripts show how to join two lists together using both func-
tions.

Concatenation function:

> L2 <- list(x=c(1,5,6,7),
y=c("apple","orange”,"melon","grapes"))

> ¢(L1,L2)

$Sitem1

[1] 24341531123352132351

$ltem2

[1] "a" "b" "c" "d" "e" "a" "b" "c" "d" "e" "a" "b"

[13]"c" "d" "e" "a" "b" "c" "d" "e"

$ltem3

[110021102001112100111302

$x

[1] 156 7

Sy

[1] "apple” "orange" "melon" "grapes"

Append Function:

> append(L1,L2,after=2)

Sitem1
[1124341531123352132351
$ltem2

[1] "a" "b" "c" "d" "e" "a" "b" "c" "d" "e" "a"
[12]"b" "c" "d" "e" "a" "b" "c" "d" "e"

$x

[1] 156 7

© CSIRO Australia, 2005 Course Materials and Exercises

R Objects 59

Sy

[1] "apple" "orange" "melon” "grapes"

$item3

110021102001 112100111302
Adding elements to a list can be achieved by

¢ adding a new component name:

> L1$Item4 <- c("apple","orange”,"melon","grapes")
alternative way
> L1[["Item4"]] <- c("apple”,"orange”,"melon","grapes”)

¢ adding a new component element, whose index is greater than the length of the list

L1[[4]] <- c("apple","orange","melon","grapes")
> names(L1)[4] <- c("ltem4")

There are also many functions within R that produce a list as output. Examples of these
functions include spline() , density() and locator()

Example: Cars93 Dataset
The Cars93 dataset was used in Session 1 to illustrate some modelling and graphical fea-
tures of R. We use this dataset again to demonstrate the use of lists.

The script that appears below produces a density plot of vehicle weight using splines of
different bin widths. The bin widths used are 500 and 1000 respectively and they change
the level of smoothness assigned to each density.

The spline function returns a list of densities (y) corresponding to bin values (x). These
can be passed to the plot routine to produce a line graph of the density.

A rug plot is produced beneath the graph to indicate actual data values. A legend de-
scribing the two lines on the plot is produced for clarity.

Figure 19 displays the density plot produced from the script below. (Note, this plot does
not reflect the mono family option that appears in the slides.)

> attach(Cars93)
> windows()

> par(family="mono")

© CSIRO Australia, 2005 Course Materials and Exercises

60 R Objects

> dw5 <- spline(density(Weight, width=500)) # list
> dwl0 <- spline(density(Weight,width=1000)) # list
> rx <- range(dw5%$x,dw10$x)

> ry <- range(dw5$y,dw10$y)

> par(mar=c(5,5,2,2)+0.1) -> oldpar

> plot(dw5,type="n",xlim=rx,ylim=ry,cex=1.5,
xlab="Weight",ylab="Density")

> lines(dw5,lty=1,col="blue")

> lines(dw10,lty=2,col="red")

> pu <- par("usr)[3:4] # actual y limits

> segments(Weight,pu[1],Weight,0,col="green")

> legend(locator(1),c("500kg window",

"1000kg window"),lty=1:2)

> detach("Cars93")

— 500kg window
-- 1000kg window:!

Density
| | | |

0 etO0 1 e04 2 e 04 3 e04 4 e04 5 e04 6 e-04
|

/ L L L1 00 DO CARIRRY L COUmORY

1000 2000 3000 4000 5000

Weight

Figure 19: Density plot of vehicle weight from the Cars93 dataset.

© CSIRO Australia, 2005 Course Materials and Exercises

Graphics: An Introduction 61

Graphics: An Introduction

Anatomy of a Plot

High level plotting commands generate figures.

A figure consists of a plot region surrounded by margins:

2 plot region 4

Margin 1

Figure 20: Anatomy of a Figure

The size of the margins is controlled by the argument mai. The value of mai is a vector
c(bottom,left,top,right) of length 4 whose values are the widths, in inches, of the
corresponding margin sides.

A typical call to par() to set the margins might be

par(mai=c(5,5,8,5)/10)

which allows 0.8in at the top and 0.5in on all other sides.

Figure Margins

Axes, axis labels and titles all appear in the margins of the figure.

Each margin is considered to have a number of text lines (not necessarily a whole number):

e Lines specified at 0 correspond to the edge of a plotted region (where the axis lines
are drawn).

e Higher line numbers are further away from the plot.

The graphical parameter mar defines how many lines appear in each of the four margins.
So mar is an alternative way of defining margins.

© CSIRO Australia, 2005 Course Materials and Exercises

62 Graphics: An Introduction

For any open graphics device there is a standard font which will be used for any characters
if no other font is specified (font)

The standard font determines the width of the text lines in the margins.

If the font is expanded or contracted (cex) before mar is set, the text line width changes
accordingly.

The axis() function draws an axis on the current plot. The side argument determines
on which side it is to appear. Axes normally get drawn at line 0 but this may be changed
with the line argument, or even inside the plot with the pos argument. If you wish to
be specific about the positions of tick marks, use the at argument.

Margin Text

Axis labels can be created using the xlab and ylab graphics parameters when passed to
functions such as plot() . To add such labels after the plot has been created, the title()
function may be used.

An alternative approach to adding margin text is through the mtext() function:

> mtext("Label text",side=1,line=2)

The above piece of code will add text just below the z-axis. Using side=3 is an alternative
method for adding a plot title. Text is centred on the axis by default, but the at argument
to mtext() can be used for more specific positioning.

Axes and tickmarks

The axis() function and others such as plot() or tsplot() use the following graph-
ical parameters to allow control of the style of the axes:

e axes : should axes be drawn? (TRUE/FALSE)
e bty : controls the type of box which is drawn around plots
- bty="0" :box drawn around plot (default)

— bty="I"" : L shaped axes drawn

bty="7" : part axes drawn on the left side and bottom of the plot. Lines drawn
to the top and right side of the plot

- bty="c" :Cshaped axes drawn

- bty="u" : U shaped axes drawn
- bty="" :] shaped axes drawn with part axis drawn on the left side of the plot

- bty="n" : No box is drawn around plot

e lab=c(nx,ny,len) : modifies the way that axes are annotated. Defines the num-
ber of x and y tick intervals and the length (in characters) of the tick labels.

© CSIRO Australia, 2005 Course Materials and Exercises

Graphics: An Introduction 63

e las : style of the axis labels

- las=0 : always parallel to the axis (default)

las=1 : always horizontal

las=2 : always perpendicular to the axis

las=3 : always vertical

e tck : length of tick marks as a fraction of the plotting region. Negative values refer
to positions that fall outside the plotting region. Positive values indicate tick marks
inside the plotting region.

e xaxs/yaxs : style of the axis interval calculation

- "s" or "e" :extreme than the range of the data

or 'r : inside the range of the data
"d" :locks in the current axis
The Plot Region

Points within the plot region are accessed using user co-ordinates. The user co-ordinates are
defined when a high level plot is created, or may be explicitly set with the usr graphics
parameter. A setting

> par(usr=c(x.lo,x.hi,y.lo,y.hi))

means that x.lo , x.hi are the two extreme allowable plotting values in the z-direction
and similarly in the y-direction.

When a graphics device is initialised, usr defaults to ¢(0,1,0,1) . The frame() com-
mand (which starts a new empty figure) uses the old value of usr for the new plotting
region.

Multiple Plots

There are two main ways of placing several plots on the one surface. The graphics para-
meter fig allows you to place several plots, possibly irregularly, on the one figure region.

It is also possible, and more common to have more than one figure to a page as a regular
n x m array of figures. This behaviour is controlled by the mfrow or mfcol graphics
parameter. For example

> par(mfrow=c(3,2))
will produce a plotting region with three rows and two columns.

Each high-level plotting command starts plotting on a new figure. When all figures are
exhausted, a new page is generated. The mfg graphics parameter keeps track of the row

© CSIRO Australia, 2005 Course Materials and Exercises

64 Graphics: An Introduction

and column of the current figure and the dimensions of the figure array. By setting this
parameter unusual figure arrangements can be achieved.

Other Graphics Parameters
Some other useful graphics parameters include

e ask=T : R asks before producing the graphic. This is useful if you need to view
multiple plots, one at a time.

e new=T: declares the current plot is unused (even if it is not). This means that R will
not erase it before moving on to the next plot. This is useful for more fancy plots,
where you may be producing a number of plots on the one figure.

e fin : gives the width and height of the current figure in inches.

e din : a read only parameter that returns the width and height of the current device
surface in inches.

Overview of Graphics Functions

R has a variety of graphics functions. These are generally classed into

e High-level plotting functions that start a new plot

e Low-level plotting functions that add elements to an existing plot
Each function has its own set of arguments. The most common ones are

e xlim ,ylim :range of variable plotted on the = and y axis respectively

e pch,col , Ity : plotting character, colour and line type

e xlab ,ylab : labels of =z and y axis respectively

e main, sub: main title and sub-title of graph

General graphing parameters can be set using the par() function. For example, to view
the setting for line type

> par()$lty

To set the line type using the par function

> par(lty=2)

Multiple plots per page can be achieved using the mfrow or mfcol argument to par. For
example,

© CSIRO Australia, 2005 Course Materials and Exercises

Graphics: An Introduction 65

2x2 plotting region where plots
appear by row
par(mfrow=c(2,2))

2x2 plotting region where plots

appear by column

Vv # # VvV H H

par(mfcol=c(2,2))

The make.high() function produces a number of high-level graphics ranging from
dotcharts, histograms, boxplots and barplots for one dimensional data, scatterplots for
two-dimensional data and contour, image plots and perspective mesh plots for three di-
mensional data. Figure 21 displays the results from running this function.

Laboratory Exercise

Try editing this function using the Tinn-R editor and changing some

of the input parameters to these graphical functions.

The make.low() function produces a number of low-level graphics. These include plot-
ting points, symbols, lines, segments or text on a graph, producing a box around a plot
or joining line segments to create a polygon. These types of graphics are often useful for
enhancing the feature of an existing plot. Figure 22 displays the results from running this
function.

Laboratory Exercise
Try editing this function using the Tinn-R editor and changing some
of the input parameters such as the type of symbol or plotting char-

acter to these graphical functions.

Displaying Univariate Data

Graphics for univariate data are often useful for exploring the location and distribution of
observations in a vector. Comparisons can be made across vectors to determine changes
in location or distribution. Furthermore, if the data correspond to times we can use time
series methods for displaying and exploring the data.

Graphical methods for exploring the distributional properties of a vector include
e hist (histogram)

e boxplot

© CSIRO Australia, 2005 Course Materials and Exercises

66

Graphics: An Introduction

dotchart hist barplot
S 4
h o 8
g o v |
f |o 3 9 -
e o) § o
d o g 3 =
c o I .
b o 0 v A
b o =
T T T T T T T T 1 e - ‘
00 02 04 06 038 -2 0 2 6 1 2 3 4 5
y
boxplot plot ggnorm
0 - T - - 0 -) &oc?@ 0 - °
< L L < o oFs ° 3 < 4
| . | \ o° 849 o =
™ — ! ™ o, 9p oP s ™
08 oc® o =1
N > N og® @ 8 [e] o o~ —
o 4 o go o & o 2 .
! 23] 8 Q o Q o
T 0%, OO 1S
- —o o © —
- -4 - ! - — o i — o
T L [o e
T T T T T T T T T T T T T T T T
Grpl Grp3 GIp5 00 02 04 06 08 10 2 -1 0 1 2
X Theoretical Quantiles
contour image persp
o
8
© o
- o
n
o
s |
<
_ -~ 8 '
™
o
g
N
o
= o
—
o
T T T T T
0 200 400 600 800 200 400 600 800

Figure 21: Examples of high level plotting functions

© CSIRO Australia, 2005 Course Materials and Exercises

Graphics: An Introduction

67

1:11

1:11

01 2 3 45

10

8 10

6

points
3
® o ®
- & eo $
o ¢
o %
%0
T T T T I
00 02 04 06 08
X
arrows
T T T I
2 4 6 8 10
1:11
segments
i ‘
T T T I
2 4 6 8 10

123 456

-1

01 2 3 45

symbols

00 02 04 06 08 10

X

box
text
12
3
13 44 3
7 1 2
4 1
9 20g
. 15
181
T T T T I
00 02 04 06 08

abline

01 2 3 45

01 2 3 45

00 02 04 06 08
X
polygon

o 4

< 4

-

~ -

- 4

o 4
! T T T T
00 02 04 06 08

X

Figure 22: Examples of high level plotting functions

© CSIRO Australia, 2005

Course Materials and Exercises

68 Graphics: An Introduction

e density
e ggnorm (Normal quantile plot) and
e qgline
The Cars93 dataset will be used to illustrate some of these plots. The following script
sets up a 2x2 plotting region and produces a histogram, boxplot, density plot and Normal
scores plot of the MPG.highway vector.
> attach(Cars93)
> par(mfrow=c(2,2))
Histogram
> hist(MPG.highway,xlab="Miles per US Gallon",
main="Histogram")
Boxplot
> boxplot(MPG.highway,main="Boxplot")
Density
> plot(density(MPG.highway),type="I",
xlab="Miles per US Gallon",main="Density")
Q-Q Plot
> qqnorm(MPG.highway,main="Normal Q-Qplot")
> qqline(MPG.highway)

The resulting plot is shown in Figure 23 and shows a distribution that is skewed heavily
towards the right. This is visible in all four plots and it is particularly highlighted in the
Normal scores plot shown in the bottom right hand corner by a set of points that deviate
significantly from the line.

To make this variable more normal we could consider using a transformation, say logs,
of the data:
> log(MPG.highway)

If we reproduce these plots on the newly transformed dataset we see that the distribu-
tions look a little better but there is still some departure from Normality present. (See
Figure 24.)

Histograms

Histograms are a useful graphic for displaying univariate data. They break up data into
cells and display each cell as a bar or rectangle, where the height is proportional to the

© CSIRO Australia, 2005 Course Materials and Exercises

Graphics: An Introduction

69

Frequency

Density

20 30 40

10

0.02 004 006 0.08

0.00

Histogram

|

30 35 40 45 50

Miles per US Gallon

Density

T T T T
20 30 40 50

Miles per US Gallon

Sample Quantiles

Boxplot

2 o
0 o
2 4

o
o o
2 4

N

j
8 4 |

'

.
g 4
i E
I
9+]

I

'
< T

Normal Q-Qplot

| o
v | o
<
2
g
0
3
2
2
0
&
o
&

Theoretical Quantiles

Figure 23: Distribution summaries of miles per gallon (highway)

Frequency

Density

15 20 25

10

0.5 1.0 15 20 25

0.0

Histogram

T

30 32 34 36 38 40

Miles per US Gallon

Density

T T T T T T
30 32 34 36 38 40

Miles per US Gallon

Sample Quantiles

Boxplot
o
o o
© 7 o
o
© _
@

3.4
L

3.0
1

Normal Q-Qplot

Theoretical Quantiles

Figure 24: Distribution summaries of miles per gallon (highway)

© CSIRO Australia, 2005

Course Materials and Exercises

70 Graphics: An Introduction

number of points falling within each cell. The number of breaks/classes can be defined
if required. The following shows example code for producing histograms. The second
histogram drawn in Figure 25 specifies break points.

> par(mfrow=c(1,2))

> hist(MPG.highway,nclass=4,main="Specifying the Numbe r of Classes")
> hist(MPG.highway,breaks=seq(from=20,t0=60,by=5),

main="Specifying the Break Points")

> par(mfrow=c(1,1))

Specifying the Number of Classes Specifying the Break Points

60
|

Rl
|

4
|

Frequency
Rl
|
Frequency
]
|

2
|

10

[—_ [—_
r T T T T T 1 r T T T 1
20 25 30 35 40 45 50 20 30 40 50 60
MPG. highway MPG . highway

Figure 25: Examples of histograms produced on the Cars93 data: (a) no breakpoints spec-
ified and (b) breakpoints specified

Boxplots

Boxplots summarise the data and display these summaries in a box and whisker forma-
tion. They represent useful summaries for one dimensional data.

The box represents the inter-quartile range (IQR) and shows the median (line), first (lower
edge of box) and third quartile (upper edge of box) of the distribution. Minimum and

© CSIRO Australia, 2005 Course Materials and Exercises

Graphics: An Introduction 71

maximum values are displayed by the whiskers (lines that extend from the box to the
minimum and maximum points).

If the distance between the minimum value and the first quartile exceeds 1.5 x IQR then
the whisker extends from the lower quartile to the smallest value within 1.5 x IQR. Ex-
treme points, representing those beyond this limit are indicated by points. A similar
procedure is adopted for distances between the maximum value and the third quartile.

Figure 26 shows the result from producing a boxplot in R using the boxplot function. A
summary of the data produces the following statistics:
> summary(MPG.highway}
Min. 1st Qu. Median Mean 3rd Qu. Max.
20.00 26.00 28.00 29.09 31.00 50.00

These can be visualised on the plot in Figure 26.

50
1
o

45

MPG.highway
35
I

30
1

25
1

20
1

Figure 26: An example boxplot produced on the Cars93 data.

Densities

Densities can be used to compute smoothed representations of the observed data. The
function density produces kernel density estimates for a given kernel and bandwidth.
By default, the Gaussian kernel is used but there is an array of other kernels available in
R. Look up the R help on density and see what options are available.

The bandwidth controls the level of smoothing. By default, this represents the standard

© CSIRO Australia, 2005 Course Materials and Exercises

72 Graphics: An Introduction

deviation of the smoothing kernel but this too, can be changed depending on your re-
quirements.

The following script produces a range of smoothed densities for the MPG.highway vari-
able in the Cars93 dataset.

> par(mfrow=c(2,2))

> plot(density(MPG.highway),type="I",
main="Default Bandwidth)

> plot(density(MPG.highway,bw=0.5),type="1",
main="Bandwidth=0.5")

> plot(density(MPG.highway,bw=1),type="1",
main="Bandwidth=1")

> plot(density(MPG.highway,bw=5),type="1",
main="Bandwidth=5")

> par(mfrow=c(1,1))

The plots shown in Figure 27 show the result of running this script. The first plot in the
top left hand corner of the figure is a density produced using the default bandwidth. This
plot is fairly smooth, showing the skewed nature of the data. The plot produced using
a bandwidth of 0.5 is a very rough representation of the data and does not accurately
portray the features of the data. The density corresponding to a bandwidth of 1 provides
a slightly higher level of smoothing but still appears too rough. The final plot, showing a
density with a bandwidth of 5 is probably too smooth as it does not highlight the skewed
nature of the data.

Quantile-Quantile Plots

Quantile-quantile plots are useful graphical displays when the aim is to check the dis-
tributional assumptions of your data. These plots produce a plot of the quantiles of one
sample versus the quantiles of another sample and overlays the points with a line that
corresponds to the theoretical quantiles from the distribution of interest. If the distribu-
tions are of the same shape then the points will fall roughly on a straight line.

Extreme points tend to be more variable than points in the centre. Therefore you can
expect to see slight departures towards the lower and upper ends of the plot.

The function gqgnorm compares the quantiles of the observed data against the quantiles
from a Normal distribution. The function qqgline will overlay the plot of quantiles with
a line based on quantiles from a theoretical Normal distribution.

Figure 28 shows a Normal scores plot for the MPG.highway variable using the qgnorm
and qgline functions in R. This plot shows some departure from Normality since the

© CSIRO Australia, 2005 Course Materials and Exercises

Graphics: An Introduction 73

Default Bandwidth Bandwidth=0.5
[ee} o
o —]
o o
o0}
© S
o - o
z ° > g
g 3 T e
o o | o <
o 4
o
S o
o o 4
o
o o
S S -
© T T T T © T T T T T T T
20 30 40 50 20 25 30 35 40 45 50
N =93 Bandwidth = 1.356 N =93 Bandwidth =0.5
Bandwidth=1 Bandwidth=5
8
o
[ee]
S 4 _
o
<
g _ 2 -
> © >
z z -
s I | @
o 2 o
o 4
o
s
o |
o o
o o
© T T T T T T T © T T T T T T
20 25 30 35 40 45 50 10 20 30 40 50 60
N =93 Bandwidth =1 N =93 Bandwidth=5

Figure 27: Density plots of MPG.highway data produced using (a) the default bandwidth,
(b) a bandwidth of 0.5, (c) a bandwidth of 1 and (d) a bandwidth of 5

© CSIRO Australia, 2005 Course Materials and Exercises

74 Graphics: An Introduction

extreme points towards the upper end of the plot fall away from the plotted theoretical
line.

Normal Q-Q Plot

MPG.highway
30 35 40 45 50
I I |
(e}

25

20

Theoretical Quantiles

Figure 28: Normal scores plot of the MPG.highway data.

To compare a sample of data with other distributions, the qgplot function can be used.
The following script generates data from a Poisson distribution and compares the data
against the Normal distribution and Poisson distribution. Figure 29 presents the results
of these comparisons.

Generating Data from Poisson Distribution

> X <- rpois(1000,lambda=5)

> par(mfrow=c(1,2),pty="s")

Comparing against a Normal

> qqnorm(x,ylab="x"

> qqline(x)

Comparing against a Poisson

> qgplot(gpois(seq(0,1,length=50),

lambda=mean(x)),X,

xlab="Theoretical Quantiles",ylab="x"

> title(main="Poisson Q-Q Plot")

© CSIRO Australia, 2005 Course Materials and Exercises

Graphics: An Introduction 75

> par(mfrow=c(1,1))

Normal Q-Q Plot Poisson Q—-Q Plot
o
— (QD —
()
S - S - o
o
® — o — oo
o
< o 4 < o 4 o
o
< < oo
o
~ ~ - o8
o
o —ocm o —o
1 T T T T 1 T T T T T 1
-3 -1 0 1 2 3 O 2 4 6 8 10
Theoretical Quantiles Theoretical Quantiles

Figure 29: Quantile-Quantile plots of sample data with (a) the Normal distribution and
(b) the Poisson distribution

Comparing Groups

There may be instances where you want to compare different groupings to investigate
differences between location and scale and other distributional properties. There are a
couple of graphical displays to help with these types of comparisons.

e Multiple histograms plotted with the same scale
e Boxplots split by groups

e Quantile-Quantile plots
These plots enable the comparison of quantiles between two samples to determine
if they are from similar distributions. If the distributions are similar, then the points

© CSIRO Australia, 2005 Course Materials and Exercises

76 Graphics: An Introduction

should lie in a straight line (roughly). Gaps between tick mark labels indicate dif-
ferences in location and scale for the two datasets.

The following script produces histograms, boxplots and quantile-quantile plots to enable
comparison between two variables in the Cars93 database.

Set up plotting region

> par(mfcol=c(2,2))

Produce histograms to compare each dataset
> hist(MPG.highway,
xlim=range(MPG.highway,MPG.city))

> hist(MPG.city,xlim=range(MPG.highway,MPG.city))

Produce boxplot split by type of driving
> boxplot(listtMPG.highway,MPG.city),
names=c("Highway","City"),

main="Miles per Gallon")

Q-Q plot to check distribution shape and scale
> qqgplot(MPG.highway,MPG.city, main="Q-Q Plot")
> par(mfrow=c(1,1))

Figure 30 shows the result from running this script in R. The plots show some differences
between variables.

Working with Time Series Objects
Time series objects can be plotted using special plotting functions, which are available in
the stats package. This is a standard package that is loaded when an R session begins.

To illustrate the plotting of time series objects, we investigate the Ideaths dataset. This
is a time series object that reports the monthly deaths from bronchitis, emphysema and
asthma for both males and females in the UK between 1974 and 1979.

To verify that it is a time series object we can use the is.ts function

© CSIRO Australia, 2005 Course Materials and Exercises

Graphics: An Introduction 77

Histogram of MPG.highway Miles per Gallon
°

0 =

—

15 20 25 30 35 40 45 50 Highway city

40

30

—_—
'

—_—

Frequency
20

10

Lo

15 20 25 30 35 40 45 50

MPG.highway

Histogram of MPG.city Q-Q Plot

40

30

10

Frequency
20
MPG.city
15 20 25 30 35 40 45
|
0o

r T T T T T T 1 T T T T
15 20 25 30 35 40 45 50 20 25 30 35 40 45 50

MPG.city MPG.highway

Figure 30: Comparison between the MPG.highway and MPG.city variables in the
Cars93 database.

> is.ts(ldeaths)
[1] TRUE

Typing in Ideaths at the R prompt provides information about the time series

> |deaths
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1974 3035 2552 2704 2554 2014 1655 1721 1524 1596 2074 2199 251
1975 2933 2889 2938 2497 1870 1726 1607 1545 1396 1787 2076 283
1976 2787 3891 3179 2011 1636 1580 1489 1300 1356 1653 2013 282
1977 3102 2294 2385 2444 1748 1554 1498 1361 1346 1564 1640 229
1978 2815 3137 2679 1969 1870 1633 1529 1366 1357 1570 1535 249
1979 3084 2605 2573 2143 1693 1504 1461 1354 1333 1492 1781 191

g kr W W N DN

Plots of time series objects can be obtained via the plot.ts() function.

> plot.ts(ldeaths)

Figure 31 displays the resulting plot and shows a strong seasonal component with a high
number of deaths occurring in January and February.

© CSIRO Australia, 2005 Course Materials and Exercises

78 Graphics: An Introduction

2000 2500 3000 3500
| |

Monthly Deaths from Lung Disease (Males and Females)

1500
|

T T T T T T T
1974 1975 1976 1977 1978 1979 1980

Time

Figure 31: Time series plot showing the strong seasonal component of the ldeaths
dataset.

The correlation at successive lags can be investigated using the acf function. This is
useful when we want to try and understand the components of the time series and the
dependencies over time. Three types of plots can be produced

e covariance computed at different lags (type="covariance")
e correlations computed at different lags (type="correlation")
e partial correlations computed at different lags (type="partial")

Autocorrelations and partial autocorrelations are the two most useful plots for assessing
serial correlation, determining an appropriate model and what parameters go into the
model. Partial autocorrelations are an extension of autocorrelations that partial out the
correlations with all elements within the lag. In other words, the dependence is on the
intermediate elements. If partial autocorrelations are requested for a lag of 1 then this is
equivalent to the autocorrelations.

Correlation functions produced for the I[deaths dataset are shown in Figure 32. All three
plots show a strong seasonal pattern that will need to be accommodated in the time series
model. A confidence interval (shown in blue) is also plotted to help with the choice of
model and associated parameters of the model.

Correlation plots were produced using the following code:

> par(mfrow=c(3,1))

© CSIRO Australia, 2005 Course Materials and Exercises

Graphics: An Introduction 79

ACF (cov)

ACF

Partial ACF

-2 e+05 1 e+05

1.0

0.5

-05 0.0

0.0 0.4 0.8

-0.4

Autocovariance Function

0.0 0.5 10 15

Lag

Autocorrelation Function

Lag

Partial Autocorrelation Function

Lag

Figure 32: Correlation and Covariance functions of the Ideaths time series.

© CSIRO Australia, 2005 Course Materials and Exercises

80 Graphics: An Introduction

\Y

acf(ldeaths,type="covariance")

\Y

acf(ldeaths,type="correlation")

\Y

acf(ldeaths,type="partial")

> par(mfrow=c(1,1))

Plotting multiple time series can be achieved using the ts.plot function. To illustrate
this, we use the Ideaths , mdeaths and fdeaths datasets which represent the monthly
deaths for both sexes, for males and females respectively. The script for producing such a
plot is shown below. Figure 33 displays the resulting plot.

> ts.plot(ldeaths,mdeaths,fdeaths,

gpars=list(xlab="year", ylab="deaths", Ity=c(1:3)))

> legend(locator(1),c("Overall Deaths",

"Male Deaths","Female Deaths"),Ity=1:3,bty="n")

4000

—— Overall Deaths
--- Male Deaths
~~~~~~ Female Deaths

deaths
2500 3000 3500
| |

2000
|

1500
|

1000
|

500
|

1974 1975 1976 1977 1978 1979 1980

year

Figure 33: Time series plots of reported monthly deaths of lung disease.

Displaying Bivariate Data

The easiest way to display bivariate data is through a scatterplot using the plot  function.
The type argument allows you to produce different types of plots

© CSIRO Australia, 2005 Course Materials and Exercises



Graphics: An Introduction 81

e type="p" :plots a character at each point

e type="I" : plots a line connecting each point

e type="b" : plots both lines and characters

e type="0" : plots lines and characters that overlay the lines

e type="s" : plots stair steps
e type="h" : plots histogram-like vertical lines
e type="n" :no points or lines are plotted
Figure 34 shows a number of plots produced using the Ideaths dataset for different
settings of type . The script that produced this plot is shown below.
# Producing scatterplots of different types
> par(mfrow=c(4,2))
> plot(ldeaths,type="p",main="pty="p"’)
> plot(ldeaths,type="1",main="pty="1"")
> plot(ldeaths,type="b",main="pty="b"")
> plot(ldeaths,type="0",main="pty="0"")
> plot(ldeaths,type="s",main="pty="s")
> plot(ldeaths,type="h",main="pty="h"")
> plot(ldeaths,type="n",main="pty="n"")
> par(mfrow=c(1,1))
Adding Points, Text, Symbols & Lines

Adding points, text, symbols and lines to an existing plot is simple to do and will be
demonstrated using the Cars93 dataset.

Points can be added to an existing plot using the points  function. See the following
script for an example of how to do this.
# Set up plotting region
> plot(MPG.highway,Price,type="n",
xlim=range(MPG.highway,MPG.city),
xlab="miles per gallon")
> points(MPG.highway,Price,col="red",pch=16)
> points(MPG.city,Price,col="blue",pch=16)

© CSIRO Australia, 2005 Course Materials and Exercises



82 Graphics: An Introduction
pty_llpll pty:“l"
(%) Lr8) _ - %)) § n
£ ™ 4o o o o o £ o 4
S =S &OQDO @ 069 OOO omo 8 _
ke] o - o O o o k] o -
81 ® W e W yw g -
S T T T T T T T T T T T T
1974 1975 1976 1977 1978 1979 1980 1974 1975 1976 1977 1978 1979 1980
Time Time
pty_llbll pty:lloll
[%2] [%2]
£ ™o a® o o o o £ ™ 4
§ _ 4R g0 Pl Te 9 om :
S o- o o O 0o o° | 3 o
Bl T ) myg th;ol“lzhplqwd’l g ]
1974 1975 1976 1977 1978 1979 1980 1974 1975 1976 1977 1978 1979 1980
Time Time
pty="s" pty="h"
o o
o _| o _
%] [T9) n n
< o - o o -
© . © _
S ® g 1l
B B |I||I|| ||I|.|| |II|..I| Lot ||||..|||
T T T T T T T N i i i i i T
1974 1975 1976 1977 1978 1979 1980 1974 1975 1976 1977 1978 1979 1980
Time Time
pty="n"
o
ISE
n Yol
L o
T .
(4]
k=] o
ISE
n
T T T T T T T
1974 1975 1976 1977 1978 1979 1980
Time

Figure 34: Time series plots of reported monthly deaths of lung disease using different
plotting characters.

© CSIRO Australia, 2005

Course Materials and Exercises



Graphics: An Introduction 83

> legend(locator(1),c("Highway","City"),
col=c("red","blue"),pch=16,bty="n")

Figure 35(a) shows the result from this script and displays a plot of the price of vehicles
versus the mile per gallon for highway driving (red) and city driving (blue).

We may wish to add text to the plot shown in Figure 35(a) to identify specific vehicles.
We can do this using the text function and this is demonstrated in the following script
using only the first ten rows of the data. Figure 35(b) is the resulting plot.
> plot(MPG.highway[1:10],Price[1:10],type="n",
ylab="Price",xlim=range(MPG.highway[1:10],
MPG.city[1:10]),xlab="miles per gallon")
> points(MPG.highway[1:10],Price[1:10],col="red",pch =16)
> points(MPG.city[1:10],Price[1:10],col="blue",pch=1 6)
> legend(locator(1),c("Highway","City"),
col=c("red","blue"),pch=16,bty="n")
# label highway data
> text(MPG.highway[1:10],Price[1:10],Manufacturer[1: 10],
cex=0.7,pos=2)

Of course there may be a time where we want to select points interactively. These may
be outlying points for example in a residual plot. We can do this using the identify
function shown in the following script.

> identify(c(MPG.city[1:10],MPG.highway[1:10]),

rep(Price[1:10],2),rep(Manufacturer[1:10],2),pos=2)

Instead of adding points to a plot, we may wish to add a symbol that represents the size
of another variable in the database. For the Cars93 dataset, it may be interesting to look
at price versus miles per gallon according to engine size of the vehicle and produce a plot
such as the one shown in Figure 35(c). This plot indicates that the cars with the bigger
engine tend to be more expensive in price and have a lower miles per gallon ratio than
other cars with smaller engines and lower in price. The script used to produce this plot is
shown below.

symbols(MPG.highway,Price,circles=EngineSize,
xlab="miles per gallon",ylab="Price",inches=0.25,

main="Area of Circle Proportional to Engine Size")

© CSIRO Australia, 2005 Course Materials and Exercises



84

Graphics: An Introduction

L] L]
2
® Highway
® City
9
')
L] L]
g4 .
o o oo
[+ L]
2 '-! ° t &)
& ° ° ° °
Q- ° °
(2]
| .
ee® ° °®
L] L]
A ] ge .' °
o 1 o o0 °
« Be 88 08 . 5,00,
® °.%008e0%,5000 °
° o0, Se $
oo g ocsl.. % . °
S °° o ! e®3° S e ® o
N B
T T T T T
15 20 25 30 35 40
miles per gallon
(a)
Area of Circle Proportional to Engine Size
. O
©
9
')
o
<
@
L2
T
o _|
2]
o
N
° @)
= 7 O o o
e - T T T T T T T
20 25 30 35 40 45 50

miles per gallon

(©)

Price

100/MPG.city

35

30

25

20

15

. Audi @
1 e Cadillac @
. Acura @
- ° BMW @
. Audi @
. Buick @
. Buick ®
. Buick @
® Highway
e City ° ° R 8
T T T
20 25 30

miles per gallon

(b)

— Lowess Smoother o .
— Least Squares

T T T T T
2000 2500 3000 3500 4000

Weight

(d)

Figure 35: Plots that show how to (a) add points, (b) add text, (c) add symbols and (d)

add lines to a plot.

© CSIRO Australia, 2005

Course Materials and Exercises



Graphics: An Introduction 85

Finally, we may wish to add lines to an existing plot. This can be achieved using the
lines function, which adds a line connected by specified points, or the abline  function,
which adds a vertical, horizontal or straight line with specific intercept and slope. To
illustrate this concept, we produce a plot of gallons per 100 miles versus weight with
three different lines overlayed: (1) a lowess smoother, (2) a least squares fit using lines
and (3) a least squares fit using abline . The resulting plot is shown in Figure 35(d) using
the script set out below.

> with(Cars93, {
plot(Weight,100/MPG.city,pch=16)
lines(lowess(Weight,100/MPG.city),col="red")
lines(Isfit(Weight,100/MPG.city),col="blue")
abline(coef(Isfit(Weight,100/MPG.city)),col="blue")
xy <- par("usr’)c(1,4)]

legend(xy[1], xy[2],

c("Lowess Smoother","Least Squares"),
col=c("red","blue"),lty=1,bty="n")

)

Labelling and Documenting Plots
R contains a number of functions for providing labels and documentation for plots. Some
of these may have been mentioned before but here they are again.

e title  :allows you to place a title, labels for the z and y axes and a subtitle

e legend : produces a legend for a plot at a specific location, unless the locator func-
tion has been used

e mtext : allows you to place text into the margins of a plot

The functions legend and title ~ have been used frequently throughout this presenta-
tion. The function mtext has also been mentioned but now, here is an example.

For large datasets it is often easier to view the correlations of the covariates as an image
instead of viewing them as text. To illustrate this concept, we use the iris  dataset.

To recap, the iris dataset consists of the sepal length and width and petal length and width
measurements for three species of Iris: Setosa, Versicolor and Virginica. The cor function

© CSIRO Australia, 2005 Course Materials and Exercises



86 Graphics: An Introduction

will calculate Pearson correlations between variables. Applying this function to the iris
dataset gives:
> cor(iris[,-5])
Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 -0.1175698 0.8717538  0.8179411
Sepal.Width -0.1175698  1.0000000  -0.4284401 -0.3661259
Petal.Length 0.8717538 -0.4284401 1.0000000  0.9628654
Petal.Width 0.8179411 -0.3661259 0.9628654  1.0000000

For small datasets, output to the screen if fine but for larger datasets this becomes a lit-
tle monotonous. Alternatively, we could visually display the correlations as an image,
where black pixels represent correlations of 1 and white pixels represent correlations of
-1. Here’s how we do/it . ..

> image(1:4,1:4,cor(iris[,-5]),
col=gray(seq(from=100,t0=0,length=100)/100),

axes=F,xlab=
> mtext(side=1,text=names(iris[,-5]),
at=seq(from=1,to=4,length=4),line=1,cex=0.8)
> mtext(side=2,text=names(iris[,-5]),
at=seq(from=1,to=4,length=4),line=1,cex=0.8)
> title(main="Image Plot of Correlations (Iris Data)")

Notice how we produce the image without any axes. The reason for this is to stop R
from printing numbers and tick marks on the x and y axes because we want the column
names to appear instead. To ensure that the column names are printed, we use the mtext
function and then add a title to the plot. The resulting plot is shown in Figure 36.

Displaying Higher Dimensional Data

Pairwise Plots

The pairs function is a useful high-level plotting function for displaying and exploring
multivariate data. It produces a scatterplot between all possible pairs of variables in a
dataset and for each variable, it uses the same scale. This is useful if you are looking for
patterns in your data.

© CSIRO Australia, 2005 Course Materials and Exercises



Graphics: An Introduction 87

Image Plot of Correlations (Iris Data)

Sepal.Width Petal.Length Petal.Width

Sepal.Length

Sepal.Length Sepal.Width Petal.Length Petal.Width

Figure 36: Image plot of correlations for the iris dataset.

© CSIRO Australia, 2005 Course Materials and Exercises



88 Graphics: An Introduction

In a previous session a pairs plot was produced for the iris data. We now apply this func-
tion to the state.x77 dataset which provides information on 50 states of the USA. The
script below shows how you can produce such a plot and Figure 37 shows the resulting
figure.

> pairs(state.x77[,1:5],

main = "Information from 50 States of America",pch = 16)

Information from 50 States of America

3000 4500 6000 68 70 72
L . L . 3
. . . . B §
Population '%‘-. Z, * -'.-: A §
H ° L
o .f.. s ..‘ | £.;.f;.o.~ o ~.Oo...':o‘..o . .é ! I.:."....._ )
o @ . . .
©:~°o o o S8 e 8°4°% o® ® ® o0
§ _’ o Q.. (] Income #‘:’ : 9 s‘o. \’3..’. Y }
e e AN I P
o 1% ° .0’ o [® o®® A o ° o.o °
S le ° ° °
© . . . .
(Y o F (J B 2
* . . F'{ e - ot °° * % ol
o, | Miteracy || st T T
ooo.’ ° o.:... (LX) LY IS B
! Doy | Lot [
e cden | . 28
N _!.o (] o " a8, T g° . "::l: .
c LT el |l || LeBXD 1] o
}0‘. ;. ° o o %o, ® e ..0
0 ° °
S 1 ® o o °®
o:. o : * . o o.: =
Cr R IR G I L P R I Murder | °
. % e b Sy o .o ’&.‘0‘ ° uraer S
€. - Bl |1 e e B
o %° o ° o ® C
|' | N — < e |’.| .I T g.. L N
0 10000 20000 0.5 1.5 2.5 2 6 10 14

Figure 37: Pairwise scatter plots of statistics reported from the US

For something a little more sophisticated, we can overlay the pairs plot with a smoother
to look for any trends in the data. We can achieve this using the following script. Figure 38
plots the result.

© CSIRO Australia, 2005 Course Materials and Exercises



Graphics: An Introduction 89

> pairs(state.x77[,1:5],
main = "Information from 50 States of America",

pch = 16,panel=panel.smooth)

Information from 50 States of America

3000 4500 6000 68 70 72
L L o
. . . . S
. . . . IS
i °e, o 3 e o L8
Population o z. $ A g
Y 0 o 00 o [XJ ® e, ) o |-

-~ m‘ X ¢’ | .

. . . .

6000

4500

_’ ~o

3000

1.5 25

T
0.5

72
|
“
X
°
[

68 70
[}
o

.. | <«
® —
el - B
o, Murder
[ ] - ©
[
P C o

0 10000 20000 2 6 10 14

Figure 38: Pairwise scatter plots of statistics reported from the US. A scatterplot smoother
is overlayed.

Star and Segment Plots

These type of plots are useful for exploring multivariate data. Each point on the star
represents a variable and the length of each radial is proportional to the value of that
variable. Similar stars therefore indicate similar cases.

To illustrate this concept, the Motor Vehicle Performance (1974 US dataset) will be used.

© CSIRO Australia, 2005 Course Materials and Exercises



90 Graphics: An Introduction

The aim is to investigate the similarity between makes and models using seven variables:

Miles/US gallon (mpg)  number of cylinders (cyl) displacement (cub. in.)
gross horsepower (hp) rear axle ratio (drat) weight (wt)
quarter mile time (gsec)

Figure 39 displays a star plot using the stars function outlined in the script below. (Note
the specification of the key location in the script. This places the key in the bottom right
hand corner of the plot.) Of the different makes and models displayed, there are some
similarities between vehicles. For example, the Cadillac Fleetwood and Lincoln Conti-
nental appear to be similar in terms of all of the variables. The Mercedes vehicles appear
to be similar with the exception to the 240D series. Although the 280C series is similar
to the 230 and 280 series, there are slight differences in terms of the rear axle ratio and
mileage.

> stars(mtcars[,1:7],key.loc=c(14,1.8),

main="Motor Vehicle Performance",
flip.labels=FALSE)

A segment plot shown in Figure 40 is an alternative multivariate plot that tries to sum-
marise the features of each vehicle using segments from a circle. To obtain this plot, the
draw.segments=T must be specified.

Overlaying Figures

Figures can be overlayed using one of two features in R. The first uses the add=T option,
which is available in some plotting functions. This will add certain features to an existing
graph. For example, in the script below, a contour plot showing topographic information
about a New Zealand volcano is overlayed on an image. Figure 41 shows the resulting
graphic.

> z <- volcano

> X <- 10 *(L:nrow(z)) # 10m spacing (S to N)
>y <- 10 *(1l:ncol(z)) # 10m spacing (E to W)
> image(x,y,z,main="Mt Eden")

> contour(x,y,z,add=T)

Alternatively, figures can be overlayed using the new=T option within the par function.
This was described earlier in the notes. To recap, this feature, when used in R, can overlay
a plot using the 