R Internals

Version 3.6.0 (2019-04-26)

R Core Team

This manual is for R, version 3.6.0 (2019-04-26).
Copyright (© 1999-2018 R Core Team

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the R Core
Team.

Table of Contents

1 R Internal Structures........................... 1
1L SEXPS ot 1
1.1.1 SEXPTYPESs ... 1
1.1.2 Restofheader........ ... o i 2
1.1.3 The ‘data’o 4
1.1.4 Allocation clasSesot 6
1.2 Environments and variable lookup 6
1.2.1 Search paths....... ... i 7
1.2.2 Namespacesovv i 7
1.2.3 Hashtable..........o 8
1.3 Attributes..... ... i 8
1.4 ComteXtS oottt ettt 9
1.5 Argument evaluation 11
1.5.1 MiSSINGNeSS. .. vvvttt ittt 12
1.5.2 Dot-dot-dot arguments i i 13
1.6 Autoprinting ... 13
1.7 The write barrier and the garbage collector 14
1.8 Serialization Formats............ ... i i 14
1.9 Encodings for CHARSXPs. ... 16
1.10 The CHARSXP cache..........coiiiiiiiiiiiiiiiia... 17
1.11 Warnings and eIrors.ouiutitiiie i 17
112 5S4 0bJeCtS . oot e 18
1.12.1 Representation of S4 objects............ L. 18
1.12.2 0S4 Classes .ot 18
1.12.3 S4methods. ... 18
1.12.4 Mechanics of S4 dispatch 19
1.13 Memory allocators ..o 20
1.13.1 Internals of R_alloc........ ... oo i i 22
1.14 Internal use of global and base environments.................. 22
1.14.1 Baseenvironmentcooiiiiiiiiiiiiiiiiiia... 22
1.14.2 Global environment...............coiiiiiiii, 22
115 Modules. ... e 22
116 Visibility . .o 23
1.16.1 Hiding C entry points ..., 23
1.16.2 Variables in Windows DLLs 23
1.17 Lazy loadingooiiiimi i 24
2 .Internal vs .Primitive........................ 26
2.1 Special primitives ... 29
2.2 Special internals......... ... 29
2.3 Prototypes for primitives 29

2.4 Adding a primitive 30

3 Internationalization in the R sources......... 31
3.1 Rocode ... oo 31
3.2 Main C code ..ot 31
3.3 Windows-GUI-specific code ..., 32
3.4 macOS GUIL . ..o 32
3.5 Updating. e 32

4 Structure of an Installed Package............. 33
4.1 Metadata.o 33
4.2 Help oo 34

5 Files. ... 35

6 Graphics........ ... 36
6.1 Graphics Devices 37

6.1.1 Device structurest 37
6.1.2 Device capabilities............ ..o 39
6.1.3 Handling text ... 40
6.1.4 Conventionsuiiriii e 42
6.1.0 Mode ... 42
6.1.6 Graphics events. ... 43
6.1.7 Specific devicesot 43
6.1.7. 1 XI1() e e 43
6.1.7.2 windows() ...t 44

6.2 COlOUTS . .o vt 45
6.3 Base graphicso 46
6.3.1 Arguments and parametersc.. i, 47
6.4 Grid graphics. ... 48

7 GUlconsoles............ 49
Tl R e e 49

8 Tools 51

9 Rcodingstandards 62

10 Testing Rcode................................ 64

11 Useof TeX dialects........................... 65

12 Current and future directions................ 66
12,1 Long vectorS . ..ottt 66
12.2 64-Dib byPeS . oo 67

12.3 Large matricesoouui i e 67

ii

Function and variable index

Concept index...............

iii

1 R Internal Structures

This chapter is the beginnings of documentation about R internal structures. It is written
for the core team and others studying the code in the src/main directory.

It is a work-in-progress and should be checked against the current version of the source
code. Versions for R 2.x.y contain historical comments about when features were introduced:
this version is for the 3.x.y series.

1.1 SEXPs

What R users think of as wvariables or objects are symbols which are bound to a value.
The value can be thought of as either a SEXP (a pointer), or the structure it points to,
a SEXPREC (and there are alternative forms used for vectors, namely VECSXP pointing to
VECTOR_SEXPREC structures). So the basic building blocks of R objects are often called
nodes, meaning SEXPRECs or VECTOR_SEXPRECs.

Note that the internal structure of the SEXPREC is not made available to R Extensions:
rather SEXP is an opaque pointer, and the internals can only be accessed by the functions
provided.

Both types of node structure have as their first three fields a 64-bit sxpinfo header and
then three pointers (to the attributes and the previous and next node in a doubly-linked
list), and then some further fields. On a 32-bit platform a node' occupies 32 bytes: on a
64-bit platform typically 56 bytes (depending on alignment constraints).

The first five bits of the sxpinfo header specify one of up to 32 SEXPTYPEs.

1.1.1 SEXPTYPEs

Currently SEXPTYPEs 0:10 and 13:25 are in use. Values 11 and 12 were used for internal fac-
tors and ordered factors and have since been withdrawn. Note that the SEXPTYPE numbers
are stored in saved objects and that the ordering of the types is used, so the gap cannot
easily be reused.

no SEXPTYPE Description

0 NILSXP NULL

1 SYMSXP symbols

2 LISTSXP pairlists

3 CLOSXP closures

4 ENVSXP environments

5 PROMSXP promises

6 LANGSXP language objects
7 SPECIALSXP special functions
8 BUILTINSXP builtin functions
9 CHARSXP internal character strings
10 LGLSXP logical vectors
13 INTSXP integer vectors
14 REALSXP numeric vectors

1 strictly, a SEXPREC node; VECTOR_SEXPREC nodes are slightly smaller but followed by data in the node.

Chapter 1: R Internal Structures 2

15 CPLXSXP complex vectors

16 STRSXP character vectors

17 DOTSXP dot-dot-dot object

18 ANYSXP make “any” args work
19 VECSXP list (generic vector)
20 EXPRSXP expression vector

21 BCODESXP byte code

22 EXTPTRSXP external pointer

23 WEAKREFSXP weak reference

24 RAWSXP raw vector

25 S4SXP S4 classes not of simple type

Many of these will be familiar from R level: the atomic vector types are LGLSXP, INTSXP,
REALSXP, CPLXSP, STRSXP and RAWSXP. Lists are VECSXP and names (also known as symbols)
are SYMSXP. Pairlists (LISTSXP, the name going back to the origins of R as a Scheme-like
language) are rarely seen at R level, but are for example used for argument lists. Character
vectors are effectively lists all of whose elements are CHARSXP, a type that is rarely visible
at R level.

Language objects (LANGSXP) are calls (including formulae and so on). Internally they are
pairlists with first element a reference? to the function to be called with remaining elements
the actual arguments for the call (and with the tags if present giving the specified argument
names). Although this is not enforced, many places in the code assume that the pairlist is
of length one or more, often without checking.

Expressions are of type EXPRSXP: they are a vector of (usually language) objects most
often seen as the result of parse().

The functions are of types CLOSXP, SPECIALSXP and BUILTINSXP: where SEXPTYPEs are
stored in an integer these are sometimes lumped into a pseudo-type FUNSXP with code 99.
Functions defined via function are of type CLOSXP and have formals, body and environment.

The SEXPTYPE S4SXP is for S4 objects which do not consist solely of a simple type such
as an atomic vector or function.

1.1.2 Rest of header

Note that the size and structure of the header changed in R 3.5.0: see earlier editions of
this manual for the previous layout.

The sxpinfo header is defined as a 64-bit C structure by

#define NAMED_BITS 16

struct sxpinfo_struct {
SEXPTYPE type 5; /* discussed above */
unsigned int scalar: 1; /* is this a numeric vector of length 17
unsigned int obj 1; /* is this an object with a class attribute? */
unsigned int alt 1; /= is this an ALTREP object? */
unsigned int gp : 16; /* general purpose, see below */
unsigned int mark : 1; /* mark object as ‘in use’ in GC */
unsigned int debug : 1;

2 a pointer to a function or a symbol to look up the function by name, or a language object to be evaluated
to give a function.

Chapter 1: R Internal Structures 3

unsigned int trace : ;
unsigned int spare : ; /* debug once and with reference counting */
unsigned int gcgen : ; /* generation for GC */

unsigned int gccls : 3; /* class of node for GC */

unsigned int named : NAMED_BITS; /* used to control copying */
unsigned int extra : 32 - NAMED_BITS;

}; /% Tot: 64 */
The debug bit is used for closures and environments. For closures it is set by debug()
and unset by undebug(), and indicates that evaluations of the function should be run under
the browser. For environments it indicates whether the browsing is in single-step mode.

N

The trace bit is used for functions for trace() and for other objects when tracing
duplications (see tracemem).

The spare bit is used for closures to mark them for one-time debugging.

The named field is set and accessed by the SET_NAMED and NAMED macros, and take values
0, 1 and 2, or possibly higher if NAMEDMAX is set to a higher value. R has a ‘call by value’
illusion, so an assignment like

b <- a
appears to make a copy of a and refer to it as b. However, if neither a nor b are subsequently
altered there is no need to copy. What really happens is that a new symbol b is bound to
the same value as a and the named field on the value object is set (in this case to 2). When
an object is about to be altered, the named field is consulted. A value of 2 or more means
that the object must be duplicated before being changed. (Note that this does not say that
it is necessary to duplicate, only that it should be duplicated whether necessary or not.) A
value of 0 means that it is known that no other SEXP shares data with this object, and so
it may safely be altered. A value of 1 is used for situations like

dim(a) <- (7, 2)
where in principle two copies of a exist for the duration of the computation as (in principle)

a <- ‘dim<-‘(a, (7, 2))
but for no longer, and so some primitive functions can be optimized to avoid a copy in this
case.

The gp bits are by definition ‘general purpose’. We label these from 0 to 15. Bits 0-5 and
bits 14-15 have been used as described below (mainly from detective work on the sources).

The bits can be accessed and set by the LEVELS and SETLEVELS macros, which names
appear to date back to the internal factor and ordered types and are now used in only a
few places in the code. The gp field is serialized /unserialized for the SEXPTYPEs other than
NILSXP, SYMSXP and ENVSXP.

Bits 14 and 15 of gp are used for ‘fancy bindings’. Bit 14 is used to lock a binding or
an environment, and bit 15 is used to indicate an active binding. (For the definition of an
‘active binding’ see the header comments in file src/main/envir.c.) Bit 15 is used for an
environment to indicate if it participates in the global cache.

The macros ARGUSED and SET_ARGUSED are used when matching actual and formal func-
tion arguments, and take the values 0, 1 and 2.

The macros MISSING and SET_MISSING are used for pairlists of arguments. Four bits
are reserved, but only two are used (and exactly what for is not explained). It seems that

Chapter 1: R Internal Structures 4

bit 0 is used by matchArgs to mark missingness on the returned argument list, and bit 1 is
used to mark the use of a default value for an argument copied to the evaluation frame of
a closure.

Bit 0 is used by macros DDVAL and SET_DDVAL. This indicates that a SYMSXP is one of
the symbols ..n which are implicitly created when ... is processed, and so indicates that
it may need to be looked up in a DOTSXP.

Bit 0 is used for PRSEEN, a flag to indicate if a promise has already been seen during the
evaluation of the promise (and so to avoid recursive loops).

Bit 0 is used for HASHASH, on the PRINTNAME of the TAG of the frame of an environment.
(This bit is not serialized for CHARSXP objects.)

Bits 0 and 1 are used for weak references (to indicate ‘ready to finalize’, ‘finalize on
exit’).

Bit 0 is used by the condition handling system (on a VECSXP) to indicate a calling handler.

Bit 4 is turned on to mark S4 objects.

Bits 1, 2, 3, 5 and 6 are used for a CHARSXP to denote its encoding. Bit 1 indicates that
the CHARSXP should be treated as a set of bytes, not necessarily representing a character in
any known encoding. Bits 2, 3 and 6 are used to indicate that it is known to be in Latin-1,
UTF-8 or ASCII respectively.

Bit 5 for a CHARSXP indicates that it is hashed by its address, that is NA_STRING or is in
the CHARSXP cache (this is not serialized). Only exceptionally is a CHARSXP not hashed, and
this should never happen in end-user code.

1.1.3 The ‘data’

A SEXPREC is a C structure containing the 32-bit header as described above, three pointers
(to the attributes, previous and next node) and the node data, a union

union {
struct primsxp_struct primsxp;
struct symsxp_struct symsxp;
struct listsxp_struct listsxp;
struct envsxp_struct envsxp,
struct closxp_struct closxp;
struct promsxp_struct promsxp;
}oug
All of these alternatives apart from the first (an int) are three pointers, so the union
occupies three words.

The vector types are RAWSXP, CHARSXP, LGLSXP, INTSXP, REALSXP, CPLXSXP, STRSXP,
VECSXP, EXPRSXP and WEAKREFSXP. Remember that such types are a VECTOR_SEXPREC,
which again consists of the header and the same three pointers, but followed by two integers
giving the length and ‘true length’® of the vector, and then followed by the data (aligned as
required: on most 32-bit systems with a 24-byte VECTOR_SEXPREC node the data can follow
immediately after the node). The data are a block of memory of the appropriate length to

3 This is almost unused. The only current use is for hash tables of environments (VECSXPs), where length
is the size of the table and truelength is the number of primary slots in use, and for the reference hash
tables in serialization (VECSXPs), where truelength is the number of slots in use.

Chapter 1: R Internal Structures 5

store ‘true length’ elements (rounded up to a multiple of 8 bytes, with the 8-byte blocks
being the ‘Vcells’ referred in the documentation for gc()).

The ‘data’ for the various types are given in the table below. A lot of this is interpreta-
tion, i.e. the types are not checked.

NILSXP There is only one object of type NILSXP, R_NilValue, with no data.

SYMSXP Pointers to three nodes, the name, value and internal, accessed by PRINTNAME
(a CHARSXP), SYMVALUE and INTERNAL. (If the symbol’s value is a .Internal
function, the last is a pointer to the appropriate SEXPREC.) Many symbols have
SYMVALUE R_UnboundValue.

LISTSXP Pointers to the CAR, CDR (usually a LISTSXP or NULL) and TAG (a SYMSXP
or NULL).

CLOSXP Pointers to the formals (a pairlist), the body and the environment.

ENVSXP Pointers to the frame, enclosing environment and hash table (NULL or a VECSXP).
A frame is a tagged pairlist with tag the symbol and CAR the bound value.

PROMSXP Pointers to the value, expression and environment (in which to evaluate the
expression). Once an promise has been evaluated, the environment is set to
NULL.

LANGSXP A special type of LISTSXP used for function calls. (The CAR references the
function (perhaps via a symbol or language object), and the CDR the argu-
ment list with tags for named arguments.) R-level documentation references
to ‘expressions’ / ‘language objects’ are mainly LANGSXPs, but can be symbols
(SYMSXPs) or expression vectors (EXPRSXPs).

SPECTALSXP
BUILTINSXP
An integer giving the offset into the table of primitives/.Internals.

CHARSXP length, truelength followed by a block of bytes (allowing for the nul termi-

nator).

LGLSXP

INTSXP length, truelength followed by a block of C ints (which are 32 bits on all R
platforms).

REALSXP length, truelength followed by a block of C doubles.
CPLXSXP length, truelength followed by a block of C99 double complexs.

STRSXP length, truelength followed by a block of pointers (SEXPs pointing to
CHARSXPs).

DOTSXP A special type of LISTSXP for the value bound to a ... symbol: a pairlist of
promises.

ANYSXP This is used as a place holder for any type: there are no actual objects of this
type.

Chapter 1: R Internal Structures 6

VECSXP

EXPRSXP length, truelength followed by a block of pointers. These are internally iden-
tical (and identical to STRSXP) but differ in the interpretations placed on the
elements.

BCODESXP For the ‘byte-code’ objects generated by the compiler.

EXTPTRSXP
Has three pointers, to the pointer, the protection value (an R object which if
alive protects this object) and a tag (a SYMSXP?).

WEAKREFSXP
A WEAKREFSXP is a special VECSXP of length 4, with elements ‘key’, ‘value’,
‘finalizer’ and ‘next’. The ‘key’ is NULL, an environment or an external
pointer, and the ‘finalizer’ is a function or NULL.

RAWSXP length, truelength followed by a block of bytes.

S4SXP two unused pointers and a tag.

1.1.4 Allocation classes

As we have seen, the field gccls in the header is three bits to label up to 8 classes of nodes.
Non-vector nodes are of class 0, and ‘small’ vector nodes are of classes 1 to 5, with a class
for custom allocator vector nodes 6 and ‘large’ vector nodes being of class 7. The ‘small’
vector nodes are able to store vector data of up to 8, 16, 32, 64 and 128 bytes: larger vectors
are malloc-ed individually whereas the ‘small’ nodes are allocated from pages of about 2000
bytes. Vector nodes allocated using custom allocators (via allocVector3) are not counted
in the gc memory usage statistics since their memory semantics is not under R’s control
and may be non-standard (e.g., memory could be partially shared across nodes).

1.2 Environments and variable lookup

What users think of as ‘variables’ are symbols which are bound to objects in ‘environments’.
The word ‘environment’ is used ambiguously in R to mean either the frame of an ENVSXP
(a pairlist of symbol-value pairs) or an ENVSXP, a frame plus an enclosure.

There are additional places that ‘variables’ can be looked up, called ‘user databases’ in
comments in the code. These seem undocumented in the R sources, but apparently refer
to the RObjectTable package at http://www.omegahat.net/RObjectTables/.

The base environment is special. There is an ENVSXP environment with enclosure the
empty environment R_EmptyEnv, but the frame of that environment is not used. Rather
its bindings are part of the global symbol table, being those symbols in the global symbol
table whose values are not R_UnboundValue. When R is started the internal functions
are installed (by C code) in the symbol table, with primitive functions having values and
.Internal functions having what would be their values in the field accessed by the INTERNAL
macro. Then .Platform and .Machine are computed and the base package is loaded into
the base environment followed by the system profile.

The frames of environments (and the symbol table) are normally hashed for faster access
(including insertion and deletion).

By default R maintains a (hashed) global cache of ‘variables’ (that is symbols and their
bindings) which have been found, and this refers only to environments which have been

http://www.omegahat.net/RObjectTables/

Chapter 1: R Internal Structures 7

marked to participate, which consists of the global environment (aka the user workspace),
the base environment plus environments* which have been attached. When an environment
is either attached or detached, the names of its symbols are flushed from the cache. The
cache is used whenever searching for variables from the global environment (possibly as part
of a recursive search).

1.2.1 Search paths

S has the notion of a ‘search path’: the lookup for a ‘variable’ leads (possibly through a
series of frames) to the ‘session frame’ the ‘working directory’ and then along the search
path. The search path is a series of databases (as returned by search()) which contain the
system functions (but not necessarily at the end of the path, as by default the equivalent
of packages are added at the end).

R has a variant on the S model. There is a search path (also returned by search())
which consists of the global environment (aka user workspace) followed by environments
which have been attached and finally the base environment. Note that unlike S it is not
possible to attach environments before the workspace nor after the base environment.

However, the notion of variable lookup is more general in R, hence the plural in the title
of this subsection. Since environments have enclosures, from any environment there is a
search path found by looking in the frame, then the frame of its enclosure and so on. Since
loops are not allowed, this process will eventually terminate: it can terminate at either the
base environment or the empty environment. (It can be conceptually simpler to think of
the search always terminating at the empty environment, but with an optimization to stop
at the base environment.) So the ‘search path’ describes the chain of environments which
is traversed once the search reaches the global environment.

1.2.2 Namespaces

Namespaces are environments associated with packages (and once again the base package
is special and will be considered separately). A package pkg defines two environments
namespace: pkg and package:pkg: it is package: pkg that can be attached and form part
of the search path.

The objects defined by the R code in the package are symbols with bindings in the
namespace: pkg environment. The package: pkg environment is populated by selected sym-
bols from the namespace: pkg environment (the exports). The enclosure of this environment
is an environment populated with the explicit imports from other namespaces, and the en-
closure of that environment is the base namespace. (So the illusion of the imports being in
the namespace environment is created via the environment tree.) The enclosure of the base
namespace is the global environment, so the search from a package namespace goes via the
(explicit and implicit) imports to the standard ‘search path’.

The base namespace environment R_BaseNamespace is another ENVSXP that is special-
cased. It is effectively the same thing as the base environment R_BaseEnv except that its
enclosure is the global environment rather than the empty environment: the internal code
diverts lookups in its frame to the global symbol table.

4 Remember that attaching a list or a saved image actually creates and populates an environment and
attaches that.

Chapter 1: R Internal Structures 8

1.2.3 Hash table

Environments in R usually have a hash table, and nowadays that is the default in new.env ().
It is stored as a VECSXP where length is used for the allocated size of the table and
truelength is the number of primary slots in use—the pointer to the VECSXP is part of
the header of a SEXP of type ENVSXP, and this points to R_NilValue if the environment is
not hashed.

For the pros and cons of hashing, see a basic text on Computer Science.

The code to implement hashed environments is in src/main/envir.c. Unless set oth-
erwise (e.g. by the size argument of new.env()) the initial table size is 29. The table will
be resized by a factor of 1.2 once the load factor (the proportion of primary slots in use)
reaches 85%.

The hash chains are stored as pairlist elements of the VECSXP: items are inserted at
the front of the pairlist. Hashing is principally designed for fast searching of environments,
which are from time to time added to but rarely deleted from, so items are not actually
deleted but have their value set to R_UnboundValue.

1.3 Attributes

As we have seen, every SEXPREC has a pointer to the attributes of the node (default R_
NilValue). The attributes can be accessed/set by the macros/functions ATTRIB and SET_
ATTRIB, but such direct access is normally only used to check if the attributes are NULL or to
reset them. Otherwise access goes through the functions getAttrib and setAttrib which
impose restrictions on the attributes. One thing to watch is that if you copy attributes
from one object to another you may (un)set the "class" attribute and so need to copy the
object and S4 bits as well. There is a macro/function DUPLICATE_ATTRIB to automate this.

Note that the ‘attributes’ of a CHARSXP are used as part of the management of the
CHARSXP cache: of course CHARSXP’s are not user-visible but C-level code might look at
their attributes.

The code assumes that the attributes of a node are either R_NilValue or a pairlist
of non-zero length (and this is checked by SET_ATTRIB). The attributes are named (via
tags on the pairlist). The replacement function attributes<- ensures that "dim" precedes
"dimnames" in the pairlist. Attribute "dim" is one of several that is treated specially: the
values are checked, and any "names" and "dimnames" attributes are removed. Similarly,
you cannot set "dimnames" without having set "dim", and the value assigned must be a list
of the correct length and with elements of the correct lengths (and all zero-length elements
are replaced by NULL).

The other attributes which are given special treatment are "names", "class", "tsp",
"comment" and "row.names". For pairlist-like objects the names are not stored as an
attribute but (as symbols) as the tags: however the R interface makes them look like
conventional attributes, and for one-dimensional arrays they are stored as the first element
of the "dimnames" attribute. The C code ensures that the "tsp" attribute is an REALSXP,
the frequency is positive and the implied length agrees with the number of rows of the
object being assigned to. Classes and comments are restricted to character vectors, and
assigning a zero-length comment or class removes the attribute. Setting or removing a
"class" attribute sets the object bit appropriately. Integer row names are converted to
and from the internal compact representation.

Chapter 1: R Internal Structures 9

Care needs to be taken when adding attributes to objects of the types with non-standard
copying semantics. There is only one object of type NILSXP, R_NilValue, and that should
never have attributes (and this is enforced in installAttrib). For environments, external
pointers and weak references, the attributes should be relevant to all uses of the object: it
is for example reasonable to have a name for an environment, and also a "path" attribute
for those environments populated from R code in a package.

When should attributes be preserved under operations on an object? Becker, Chambers
& Wilks (1988, pp. 144-6) give some guidance. Scalar functions (those which operate
element-by-element on a vector and whose output is similar to the input) should preserve
attributes (except perhaps class, and if they do preserve class they need to preserve the
OBJECT and S4 bits). Binary operations normally call copyMostAttributes to copy most
attributes from the longer argument (and if they are of the same length from both, preferring
the values on the first). Here ‘most’ means all except the names, dim and dimnames which
are set appropriately by the code for the operator.

Subsetting (other than by an empty index) generally drops all attributes except names,
dim and dimnames which are reset as appropriate. On the other hand, subassignment gen-
erally preserves such attributes even if the length is changed. Coercion drops all attributes.
For example:

> x <- structure(1:8, names=letters[1:8], comm="a comment")
> x[]

abcdefgh

123456738

attr(,"comm")

[1] "a comment"

> x[1:3]
abc
123

> x[3] <- 3
> X

abcdefgh
1234567328
attr(,"comm"

[1] "a comment"

> x[9] <- 9

> x
abcdefgh
1234567829
attr(,"comm")

[1] "a comment"

1.4 Contexts

Contexts are the internal mechanism used to keep track of where a computation has got
to (and from where), so that control-flow constructs can work and reasonable information
can be produced on error conditions (such as via traceback), and otherwise (the sys.xxx
functions).

Chapter 1: R Internal Structures

10

Execution contexts are a stack of C structs:

typedef struct RCNTXT {
struct RCNTXT *nextcontext; /* The next context up the chain */

int callflag;

JMP_BUF cjmpbuf;

int cstacktop;
int evaldepth;
SEXP promargs;
SEXP callfun;

SEXP sysparent;

SEXP call;
SEXP cloenv;
SEXP conexit;

void (*cend) (void *);
void *cenddata;

char *vmax;
int intsusp;

SEXP handlerstack;
SEXP restartstack;
struct RPRSTACK *prstack; /* Stack of pending promises */
} RCNTXT, *context;

/* The context ‘type’ */

/* C stack and register information */
/* Top of the pointer protection stack */
/* Evaluation depth at inception */

/* Promises supplied to closure */

/* The closure called */

/* Environment the closure was called from */
/* The call that effected this context */
/* The environment */

/* Interpreted on.exit code */

/* C on.exit thunk */

/* Data for C on.exit thunk */

/* Top of the R_alloc stack */

/* Interrupts are suspended */

/* Condition handler stack */

/* Stack of available restarts */

plus additional fields for the byte-code compiler. The ‘types’ are from

enum {
CTXT_TOPLEVEL
CTXT_NEXT
CTXT_BREAK
CTXT_LOOP
CTXT_FUNCTION
CTXT_CCODE
CTXT_RETURN
CTXT_BROWSER
CTXT_GENERIC
CTXT_RESTART
CTXT_BUILTIN

}s;

0, /x
1, /%
2, /*
3, /*
4, /*
8, [/
=12, /*
= 16, /*
= 20, /*
= 32, /*
64 /%

toplevel context */

target for next */

target for break */

break or next target */

function closure */

other functions that need error cleanup */
return() from a closure */

return target on exit from browser */
rather, running an S3 method */

a call to restart was made from a closure */
builtin internal function */

where the CTXT_FUNCTION bit is on wherever function closures are involved.

Contexts are created by a call to begincontext and ended by a call to endcontext:
code can search up the stack for a particular type of context via findcontext (and jump
there) or jump to a specific context via R_JumpToContext. R_ToplevelContext is the ‘idle’
state (normally the command prompt), and R_GlobalContext is the top of the stack.

Note that whilst calls to closures and builtins set a context, those to special internal

functions never do.

Dispatching from a S3 generic (via UseMethod or its internal equivalent) or calling
NextMethod sets the context type to CTXT_GENERIC. This is used to set the sysparent

Chapter 1: R Internal Structures 11

of the method call to that of the generic, so the method appears to have been called in
place of the generic rather than from the generic.

The R sys.frame and sys.call functions work by counting calls to closures (type
CTXT_FUNCTION) from either end of the context stack.

Note that the sysparent element of the structure is not the same thing as sys.parent ().
Element sysparent is primarily used in managing changes of the function being evaluated,
i.e. by Recall and method dispatch.

CTXT_CCODE contexts are currently used in cat(), load(), scan() and write.table()
(to close the connection on error), by PROTECT, serialization (to recover from errors, e.g.
free buffers) and within the error handling code (to raise the C stack limit and reset some
variables).

1.5 Argument evaluation

As we have seen, functions in R come in three types, closures (SEXPTYPE CLOSXP), specials
(SPECIALSXP) and builtins (BUILTINSXP). In this section we consider when (and if) the
actual arguments of function calls are evaluated. The rules are different for the internal
(special/builtin) and R-level functions (closures).

For a call to a closure, the actual and formal arguments are matched and a matched
call (another LANGSXP) is constructed. This process first replaces the actual argument list
by a list of promises to the values supplied. It then constructs a new environment which
contains the names of the formal parameters matched to actual or default values: all the
matched values are promises, the defaults as promises to be evaluated in the environment
just created. That environment is then used for the evaluation of the body of the function,
and promises will be forced (and hence actual or default arguments evaluated) when they are
encountered. (Evaluating a promise sets NAMED = NAMEDMAX on its value, so if the argument
was a symbol its binding is regarded as having multiple references during the evaluation of
the closure call.)

If the closure is an S3 generic (that is, contains a call to UseMethod) the evaluation
process is the same until the UseMethod call is encountered. At that point the argument
on which to do dispatch (normally the first) will be evaluated if it has not been already.
If a method has been found which is a closure, a new evaluation environment is created
for it containing the matched arguments of the method plus any new variables defined so
far during the evaluation of the body of the generic. (Note that this means changes to the
values of the formal arguments in the body of the generic are discarded when calling the
method, but actual argument promises which have been forced retain the values found when
they were forced. On the other hand, missing arguments have values which are promises to
use the default supplied by the method and not by the generic.) If the method found is a
primitive it is called with the matched argument list of promises (possibly already forced)
used for the generic.

The essential difference® between special and builtin functions is that the arguments of
specials are not evaluated before the C code is called, and those of builtins are. Note that
being a special/builtin is separate from being primitive or .Internal: quote is a special

5 There is currently one other difference: when profiling builtin functions are counted as function calls but
specials are not.

Chapter 1: R Internal Structures 12

primitive, + is a builtin primitive, cbind is a special .Internal and grep is a builtin
.Internal.

Many of the internal functions are internal generics, which for specials means that they do
not evaluate their arguments on call, but the C code starts with a call to DispatchOrEval.
The latter evaluates the first argument, and looks for a method based on its class. (If S4
dispatch is on, S4 methods are looked for first, even for S3 classes.) If it finds a method,
it dispatches to that method with a call based on promises to evaluate the remaining
arguments. If no method is found, the remaining arguments are evaluated before return to
the internal generic.

The other way that internal functions can be generic is to be group generic. Most
such functions are builtins (so immediately evaluate all their arguments), and all contain a
call to the C function DispatchGeneric. There are some peculiarities over the number of
arguments for the "Math" group generic, with some members allowing only one argument,
some having two (with a default for the second) and trunc allows one or more but the
default method only accepts one.

1.5.1 Missingness

Actual arguments to (non-internal) R functions can be fewer than are required to match
the formal arguments of the function. Having unmatched formal arguments will not matter
if the argument is never used (by lazy evaluation), but when the argument is evaluated,
either its default value is evaluated (within the evaluation environment of the function) or
an error is thrown with a message along the lines of

argument "foobar" is missing, with no default

Internally missingness is handled by two mechanisms. The object R_MissingArg is used
to indicate that a formal argument has no (default) value. When matching the actual
arguments to the formal arguments, a new argument list is constructed from the formals
all of whose values are R_MissingArg with the first MISSING bit set. Then whenever a
formal argument is matched to an actual argument, the corresponding member of the new
argument list has its value set to that of the matched actual argument, and if that is not
R_MissingArg the missing bit is unset.

This new argument list is used to form the evaluation frame for the function, and if named
arguments are subsequently given a new value (before they are evaluated) the missing bit
is cleared.

Missingness of arguments can be interrogated via the missing () function. An argument
is clearly missing if its missing bit is set or if the value is R_MissingArg. However, missing-
ness can be passed on from function to function, for using a formal argument as an actual
argument in a function call does not count as evaluation. So missing() has to examine
the value (a promise) of a non-yet-evaluated formal argument to see if it might be missing,
which might involve investigating a promise and so on

Special primitives also need to handle missing arguments, and in some case (e.g. log)
that is why they are special and not builtin. This is usually done by testing if an argument’s
value is R_MissingArg.

Chapter 1: R Internal Structures 13

1.5.2 Dot-dot-dot arguments

Dot-dot-dot arguments are convenient when writing functions, but complicate the internal
code for argument evaluation.

The formals of a function with a ... argument represent that as a single argument like
any other argument, with tag the symbol R_DotsSymbol. When the actual arguments are
matched to the formals, the value of the ... argument is of SEXPTYPE DOTSXP, a pairlist of
promises (as used for matched arguments) but distinguished by the SEXPTYPE.

Recall that the evaluation frame for a function initially contains the name=value pairs

from the matched call, and hence this will be true for ... as well. The value of ... is a
(special) pairlist whose elements are referred to by the special symbols . .1, ..2, ... which
have the DDVAL bit set: when one of these is encountered it is looked up (via ddfindVar)
in the value of the ... symbol in the evaluation frame.

Values of arguments matched to a ... argument can be missing.

Special primitives may need to handle ... arguments: see for example the internal code

of switch in file src/main/builtin.c.

1.6 Autoprinting

Whether the returned value of a top-level R expression is printed is controlled by the global
boolean variable R_Visible. This is set (to true or false) on entry to all primitive and
internal functions based on the eval column of the table in file src/main/names.c: the
appropriate setting can be extracted by the macro PRIMPRINT.

The R primitive function invisible makes use of this mechanism: it just sets R_Visible
= FALSE before entry and returns its argument.

For most functions the intention will be that the setting of R_Visible when they are en-
tered is the setting used when they return, but there need to be exceptions. The R functions
identify, options, system and writeBin determine whether the result should be visible
from the arguments or user action. Other functions themselves dispatch functions which
may change the visibility flag: examples® are .Internal, do.call, eval, withVisible, if,
NextMethod, Recall, recordGraphics, standardGeneric, switch and UseMethod.

‘Special’ primitive and internal functions evaluate their arguments internally after R_
Visible has been set, and evaluation of the arguments (e.g. an assignment as in PR#9263)
can change the value of the flag.

The R_Visible flag can also get altered during the evaluation of a function, with
comments in the code about warning, writeChar and graphics functions calling GText
(PR#7397). (Since the C-level function eval sets R_Visible, this could apply to any func-
tion calling it. Since it is called when evaluating promises, even object lookup can change
R_Visible.) Internal and primitive functions force the documented setting of R_Visible
on return, unless the C code is allowed to change it (the exceptions above are indicated by
PRIMPRINT having value 2).

The actual autoprinting is done by PrintValueEnv in file print.c. If the object to be
printed has the S4 bit set and S4 methods dispatch is on, show is called to print the object.
Otherwise, if the object bit is set (so the object has a "class" attribute), print is called to
dispatch methods: for objects without a class the internal code of print.default is called.

6 the other current example is left brace, which is implemented as a primitive.

Chapter 1: R Internal Structures 14

1.7 The write barrier and the garbage collector

R has long had a generational garbage collector, and bit gcgen in the sxpinfo header is
used in the implementation of this. This is used in conjunction with the mark bit to identify
two previous generations.

There are three levels of collections. Level 0 collects only the youngest generation, level
1 collects the two youngest generations and level 2 collects all generations. After 20 level-0
collections the next collection is at level 1, and after 5 level-1 collections at level 2. Further,
if a level-n collection fails to provide 20% free space (for each of nodes and the vector heap),
the next collection will be at level n+1. (The R-level function gc() performs a level-2
collection.)

A generational collector needs to efficiently ‘age’ the objects, especially list-like objects
(including STRSXPs). This is done by ensuring that the elements of a list are regarded
as at least as old as the list when they are assigned. This is handled by the functions
SET_VECTOR_ELT and SET_STRING_ELT, which is why they are functions and not macros.
Ensuring the integrity of such operations is termed the write barrier and is done by making
the SEXP opaque and only providing access via functions (which cannot be used as lvalues
in assignments in C).

All code in R extensions is by default behind the write barrier. The only way to obtain
direct access to the internals of the SEXPRECs is to define ‘USE_RINTERNALS’ before including
header file Rinternals.h, which is normally defined in Defn.h. To enable a check on the
way that the access is used, R can be compiled with flag ——enable-strict-barrier which
ensures that header Defn.h does not define ‘USE_RINTERNALS’ and hence that SEXP is opaque
in most of R itself. (There are some necessary exceptions: foremost in file memory.c where
the accessor functions are defined and also in file size.c which needs access to the sizes of
the internal structures.)

For background papers see http://homepage . stat.uiowa.edu/ luke/R/barrier.
html and http://homepage.stat.uiowa.edu/ " luke/R/gengcnotes.html.

1.8 Serialization Formats

Serialized versions of R objects are used by load/save and also at a slightly lower
level by saveRDS/readRDS (and their earlier ‘internal’ dot-name versions) and
serialize/unserialize. These differ in what they serialize to (a file, a connection, a
raw vector) and whether they are intended to serialize a single object or a collection of
objects (typically the workspace). save writes a header at the beginning of the file (a
single LF-terminated line) which the lower-level versions do not.

save and saveRDS allow various forms of compression, and gzip compression is the
default (except for ASCII saves). Compression is applied to the whole file stream, including
the headers, so serialized files can be uncompressed or re-compressed by external programs.
Both load and readRDS can read gzip, bzip2 and xz forms of compression when reading
from a file, and gzip compression when reading from a connection.

R has used the same serialization format since R 1.4.0 in December 2001. Earlier formats
are still supported via load and save but such formats are not described here. The current
default serialization format is called ‘version 2’, and has been expanded in back-compatible
ways since its inception, for example to support additional SEXPTYPEs. Version 3 format
has been introduced in R 3.5.0.

http://homepage.stat.uiowa.edu/~luke/R/barrier.html
http://homepage.stat.uiowa.edu/~luke/R/barrier.html
http://homepage.stat.uiowa.edu/~luke/R/gengcnotes.html

Chapter 1: R Internal Structures 15

save works by writing a single-line header (typically RDX2\n for a binary save: the
only other current value is RDA2\n for save (files=TRUE)), then creating a tagged pairlist
of the objects to be saved and serializing that single object. load reads the header line,
unserializes a single object (a pairlist or a vector list) and assigns the elements of the object
in the specified environment. The header line serves two purposes in R: it identifies the
serialization format so load can switch to the appropriate reader code, and the newline
\n allows the detection of files which have been subjected to a non-binary transfer which
re-mapped line endings. It can also be thought of as a ‘magic number’ in the sense used by
the file program (although R save files are not yet by default known to that program).

Serialization in R needs to take into account that objects may contain references to
environments, which then have enclosing environments and so on. (Environments recognized
as package or name space environments are saved by name.) There are ‘reference objects’
which are not duplicated on copy and should remain shared on unserialization. These
are weak references, external pointers and environments other than those associated with
packages, namespaces and the global environment. These are handled via a hash table, and
references after the first are written out as a reference marker indexed by the table entry.

Version-2 serialization first writes a header indicating the format (normally ‘X\n’ for an
XDR format binary save, but ‘A\n’, ASCII, and ‘B\n’, native word-order binary, can also
occur) and then three integers giving the version of the format and two R versions (packed
by the R_Version macro from Rversion.h). (Unserialization interprets the two versions as
the version of R which wrote the file followed by the minimal version of R needed to read
the format.) Serialization then writes out the object recursively using function WriteItem
in file src/main/serialize.c.

Some objects are written as if they were SEXPTYPEs: such pseudo-SEXPTYPEs cover R_
NilValue, R_EmptyEnv, R_BaseEnv, R_GlobalEnv, R_UnboundValue, R_MissingArg and
R_BaseNamespace.

For all SEXPTYPEs except NILSXP, SYMSXP and ENVSXP serialization starts with an integer
with the SEXPTYPE in bits 0:77 followed by the object bit, two bits indicating if there are
any attributes